Uniformly Stability of Impulsive BAM Neural Networks with Delays

Fengjian Yang, Chaolong Zhang, Dongqing Wu, Xiaojian Hu
{"title":"Uniformly Stability of Impulsive BAM Neural Networks with Delays","authors":"Fengjian Yang, Chaolong Zhang, Dongqing Wu, Xiaojian Hu","doi":"10.1109/ISDA.2006.275","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the stability of the impulsive bidirectional associative memory (BAM) neural networks with time delays. By means of Lyapunov function and analysis technique, sufficient conditions are obtained for the existence and uniformly stability of a unique equilibrium solution without assuming the activation function to be bounded, monotonic or differentiable. This stability property is independent of the stability behavior of continuous-time BAM model since the impulses do contribution to system's uniformly stability","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper is concerned with the stability of the impulsive bidirectional associative memory (BAM) neural networks with time delays. By means of Lyapunov function and analysis technique, sufficient conditions are obtained for the existence and uniformly stability of a unique equilibrium solution without assuming the activation function to be bounded, monotonic or differentiable. This stability property is independent of the stability behavior of continuous-time BAM model since the impulses do contribution to system's uniformly stability
时滞脉冲BAM神经网络的一致稳定性
研究了具有时滞的脉冲双向联想记忆神经网络的稳定性问题。利用Lyapunov函数和分析技术,在不假设激活函数有界、单调或可微的情况下,得到了唯一平衡解存在和一致稳定的充分条件。这种稳定性与连续时间BAM模型的稳定性无关,因为脉冲确实对系统的一致稳定性有贡献
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信