CNF Encodings of Parity

G. Emdin, A. Kulikov, Ivan Mihajlin, Nikita Slezkin
{"title":"CNF Encodings of Parity","authors":"G. Emdin, A. Kulikov, Ivan Mihajlin, Nikita Slezkin","doi":"10.48550/arXiv.2203.01082","DOIUrl":null,"url":null,"abstract":"The minimum number of clauses in a CNF representation of the parity function x 1 ⊕ x 2 ⊕ · · · ⊕ x n is 2 n − 1 . One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number m of clauses and the maximum width k of clauses: 1) if there are at most s auxiliary variables, then m ≥ Ω (cid:0) 2 n/ ( s +1) /n (cid:1) and k ≥ n/ ( s + 1); 2) the minimum number of clauses is at least 3 n . We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings and depth-3 circuits. In particular, we show that lower bounds on the size of a CNF encoding of a Boolean function imply depth-3 circuit lower bounds for this function. of","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.01082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The minimum number of clauses in a CNF representation of the parity function x 1 ⊕ x 2 ⊕ · · · ⊕ x n is 2 n − 1 . One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number m of clauses and the maximum width k of clauses: 1) if there are at most s auxiliary variables, then m ≥ Ω (cid:0) 2 n/ ( s +1) /n (cid:1) and k ≥ n/ ( s + 1); 2) the minimum number of clauses is at least 3 n . We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings and depth-3 circuits. In particular, we show that lower bounds on the size of a CNF encoding of a Boolean function imply depth-3 circuit lower bounds for this function. of
校验校验的CNF编码
奇偶函数x 1⊕x 2⊕···⊕x n的CNF表示中的最小子句数为2n−1。可以通过使用非确定性变量(也称为猜测变量或辅助变量)获得更紧凑的CNF编码。本文证明了子句数m和子句最大宽度k的下界几乎与已知的上界相匹配:1)如果辅助变量最多为s,则m≥Ω (cid:0) 2n / (s +1) /n (cid:1)且k≥n/ (s +1);2)最小条款数至少为3n。我们使用CNF编码和深度-3电路之间的紧密连接,从Paturi, Pudlák和Zane的可满足编码引理中推导出前两个界。特别是,我们证明了布尔函数的CNF编码大小的下界意味着该函数的深度-3电路下界。的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信