Variable is good: Adaptive sparse channel estimation using VSS-ZA-NLMS algorithm

Guan Gui, Shinya Kumagai, A. Mehbodniya, F. Adachi
{"title":"Variable is good: Adaptive sparse channel estimation using VSS-ZA-NLMS algorithm","authors":"Guan Gui, Shinya Kumagai, A. Mehbodniya, F. Adachi","doi":"10.1109/WCSP.2013.6677215","DOIUrl":null,"url":null,"abstract":"Broadband wireless communication often requires accurate channel state information (CSI) at the receiver side due to the fact that broadband channel is described well by sparse channel model. To exploit the channel sparsity, invariable step-size zero-attracting normalized least mean square (ISS-ZA-NLMS) algorithm was applied in adaptive sparse channel estimation (ASCE). However, ISS-ZA-NLMS cannot trade off the algorithm convergence rate, estimation performance and computational cost. In this paper, we propose a variable step-size ZA-NLMS (VSS-ZA-NLMS) algorithm to improve the adaptive sparse channel estimation in terms of bit error rate (BER) and mean square error (MSE) metrics. First, we derive the proposed algorithm and explain the difference between VSS-ZA-NLMS and ISS-ZA-NLMS algorithms. Later, to verify the effectiveness of the proposed algorithm, several selected computer simulation results are shown.","PeriodicalId":342639,"journal":{"name":"2013 International Conference on Wireless Communications and Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2013.6677215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Broadband wireless communication often requires accurate channel state information (CSI) at the receiver side due to the fact that broadband channel is described well by sparse channel model. To exploit the channel sparsity, invariable step-size zero-attracting normalized least mean square (ISS-ZA-NLMS) algorithm was applied in adaptive sparse channel estimation (ASCE). However, ISS-ZA-NLMS cannot trade off the algorithm convergence rate, estimation performance and computational cost. In this paper, we propose a variable step-size ZA-NLMS (VSS-ZA-NLMS) algorithm to improve the adaptive sparse channel estimation in terms of bit error rate (BER) and mean square error (MSE) metrics. First, we derive the proposed algorithm and explain the difference between VSS-ZA-NLMS and ISS-ZA-NLMS algorithms. Later, to verify the effectiveness of the proposed algorithm, several selected computer simulation results are shown.
变量好:使用VSS-ZA-NLMS算法进行自适应稀疏信道估计
宽带无线通信通常需要接收端准确的信道状态信息(CSI),因为稀疏信道模型可以很好地描述宽带信道。为了充分利用信道的稀疏性,将不变步长吸零归一化最小均方(ss - za - nlms)算法应用于自适应稀疏信道估计。然而,ISS-ZA-NLMS不能在算法的收敛速度、估计性能和计算成本之间进行权衡。本文提出了一种可变步长ZA-NLMS (VSS-ZA-NLMS)算法,从误码率(BER)和均方误差(MSE)指标方面改进自适应稀疏信道估计。首先,我们推导了所提出的算法,并解释了VSS-ZA-NLMS算法与ISS-ZA-NLMS算法的区别。随后,为了验证所提算法的有效性,给出了几个选定的计算机仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信