Unsupervised Semantic Similarity Computation using Web Search Engines

Elias Iosif, A. Potamianos
{"title":"Unsupervised Semantic Similarity Computation using Web Search Engines","authors":"Elias Iosif, A. Potamianos","doi":"10.1109/WI.2007.104","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two novel web-based metrics for semantic similarity computation between words. Both metrics use a web search engine in order to exploit the retrieved information for the words of interest. The first metric considers only the page counts returned by a search engine, based on the work of [1]. The second downloads a number of the top ranked documents and applies \"widecontext\" and \"narrow-context\" metrics. The proposed metrics work automatically, without consulting any human annotated knowledge resource. The metrics are compared with WordNet-based methods. The metrics' performance is evaluated in terms of correlation with respect to the pairs of the commonly used Charles - Miller dataset. The proposed \"wide-context\" metric achieves 71% correlation, which is the highest score achieved among the fully unsupervised metrics in the literature up to date.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, we propose two novel web-based metrics for semantic similarity computation between words. Both metrics use a web search engine in order to exploit the retrieved information for the words of interest. The first metric considers only the page counts returned by a search engine, based on the work of [1]. The second downloads a number of the top ranked documents and applies "widecontext" and "narrow-context" metrics. The proposed metrics work automatically, without consulting any human annotated knowledge resource. The metrics are compared with WordNet-based methods. The metrics' performance is evaluated in terms of correlation with respect to the pairs of the commonly used Charles - Miller dataset. The proposed "wide-context" metric achieves 71% correlation, which is the highest score achieved among the fully unsupervised metrics in the literature up to date.
基于Web搜索引擎的无监督语义相似度计算
在本文中,我们提出了两个新的基于web的词间语义相似度计算度量。这两个指标都使用网络搜索引擎,以便利用检索到的信息找到感兴趣的单词。第一个指标只考虑搜索引擎返回的页面数,基于[1]的工作。第二个程序下载一些排名靠前的文档,并应用“widecontext”和“narrow-context”指标。建议的度量标准自动工作,不需要咨询任何人工注释的知识资源。这些指标与基于wordnet的方法进行了比较。这些指标的性能是根据与常用的Charles - Miller数据集对的相关性来评估的。提出的“宽背景”指标实现了71%的相关性,这是迄今为止文献中完全无监督指标中获得的最高分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信