Enhancing action recognition in low-resolution videos using dempster-shafer's model

Zhen Gao, Guoliang Lu, Peng Yan
{"title":"Enhancing action recognition in low-resolution videos using dempster-shafer's model","authors":"Zhen Gao, Guoliang Lu, Peng Yan","doi":"10.1109/ICDSP.2016.7868644","DOIUrl":null,"url":null,"abstract":"With the motivation of lower recognition performance as the resolution of processed action videos decreases, this paper presents a robust action recognition approach based on Dempster-Shafer (DS) theory with assumption that single video frames are independent for action discrimination. By the use of artificial neural network (ANN) estimators trained using single video frames, we first compute the basic belief assignment (BBA) for each video frame in the given query video. The Dempster's rule is then used to combine the resulting BBAs for a final threshold-based decision making. Through experiments conducted on extensive testing data with various levels of video resolutions, we demonstrated outperforming recognition performances by the proposed framework compared with state-of-the-art classifications using sequence matching, voting-based strategy and bag-of-words (BoW) method.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"582 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the motivation of lower recognition performance as the resolution of processed action videos decreases, this paper presents a robust action recognition approach based on Dempster-Shafer (DS) theory with assumption that single video frames are independent for action discrimination. By the use of artificial neural network (ANN) estimators trained using single video frames, we first compute the basic belief assignment (BBA) for each video frame in the given query video. The Dempster's rule is then used to combine the resulting BBAs for a final threshold-based decision making. Through experiments conducted on extensive testing data with various levels of video resolutions, we demonstrated outperforming recognition performances by the proposed framework compared with state-of-the-art classifications using sequence matching, voting-based strategy and bag-of-words (BoW) method.
使用dempster-shafer模型增强低分辨率视频中的动作识别
针对处理后的动作视频分辨率降低导致识别性能下降的动机,提出了一种基于Dempster-Shafer (DS)理论的鲁棒动作识别方法,并假设单个视频帧对动作判别是独立的。通过使用单视频帧训练的人工神经网络估计器,我们首先计算给定查询视频中每个视频帧的基本信念分配(BBA)。然后使用Dempster规则来组合产生的bba,以做出最终的基于阈值的决策。通过在不同级别视频分辨率的大量测试数据上进行的实验,我们证明了与使用序列匹配、基于投票的策略和词袋(BoW)方法的最新分类相比,所提出的框架具有更好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信