{"title":"Cross Domain Residual Transfer Learning for Person Re-Identification","authors":"Furqan Khan, F. Brémond","doi":"10.1109/WACV.2019.00219","DOIUrl":null,"url":null,"abstract":"This paper presents a novel way to transfer model weights from one domain to another using residual learning framework instead of direct fine-tuning. It also argues for hybrid models that use learned (deep) features and statistical metric learning for multi-shot person re-identification when training sets are small. This is in contrast to popular end-to-end neural network based models or models that use hand-crafted features with adaptive matching models (neural nets or statistical metrics). Our experiments demonstrate that a hybrid model with residual transfer learning can yield significantly better re-identification performance than an end-to-end model when training set is small. On iLIDS-VID and PRID datasets, we achieve rank-1 recognition rates of 89.8% and 95%, respectively, which is a significant improvement over state-of-the-art.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a novel way to transfer model weights from one domain to another using residual learning framework instead of direct fine-tuning. It also argues for hybrid models that use learned (deep) features and statistical metric learning for multi-shot person re-identification when training sets are small. This is in contrast to popular end-to-end neural network based models or models that use hand-crafted features with adaptive matching models (neural nets or statistical metrics). Our experiments demonstrate that a hybrid model with residual transfer learning can yield significantly better re-identification performance than an end-to-end model when training set is small. On iLIDS-VID and PRID datasets, we achieve rank-1 recognition rates of 89.8% and 95%, respectively, which is a significant improvement over state-of-the-art.