Pablo Adames, Sourabh Mokhasi, Y. Pauchard, Mohammed Moshirpour, Camilo Rostoker
{"title":"Improving Relevance in a Recommendation System to Suggest Charities without Explicit User Profiles Using Dual-Autoencoders","authors":"Pablo Adames, Sourabh Mokhasi, Y. Pauchard, Mohammed Moshirpour, Camilo Rostoker","doi":"10.1109/CDMA54072.2022.00019","DOIUrl":null,"url":null,"abstract":"This work explores the effect of the quality of inferred user profiles on the accuracy of charitable recommendations when using an item-based collaborative filter algorithm. A gap was identified in the literature with respect to the application of charitable recom-mendation systems in the absence of rich user profiles. This paper introduces an approach to generate relevant recommendations when neither user profiles nor feedback on donation preferences is available. The discovery of user preferences is achieved via the construction of implicit ratings computed from custom feature engineering, while the sparsity of item and user ratings was addressed with a dimension reduction strategy based on dual-autoencoders from a commercial machine learning platform. Our analysis shows the magnitude and sensitivity of the relationship between the relevance of the recommendations and the average number of donations per user. Raw data for this research was provided by a leading online donation platform and contains 24 million anonymous donations to 165 thousand unique causes from over 1.2 million users. We find that the most effective way to increase the relevance of recommendations by a factor of 2 at any top- k value is to train the collaborative filter with users that have at least 50 donations in the data set. As a result, the training set for the collaborative filter is restricted to 8% of the original users, 70% of the companies, 49% of the causes, and 70% of the original countries where users making donations reside.","PeriodicalId":313042,"journal":{"name":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDMA54072.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores the effect of the quality of inferred user profiles on the accuracy of charitable recommendations when using an item-based collaborative filter algorithm. A gap was identified in the literature with respect to the application of charitable recom-mendation systems in the absence of rich user profiles. This paper introduces an approach to generate relevant recommendations when neither user profiles nor feedback on donation preferences is available. The discovery of user preferences is achieved via the construction of implicit ratings computed from custom feature engineering, while the sparsity of item and user ratings was addressed with a dimension reduction strategy based on dual-autoencoders from a commercial machine learning platform. Our analysis shows the magnitude and sensitivity of the relationship between the relevance of the recommendations and the average number of donations per user. Raw data for this research was provided by a leading online donation platform and contains 24 million anonymous donations to 165 thousand unique causes from over 1.2 million users. We find that the most effective way to increase the relevance of recommendations by a factor of 2 at any top- k value is to train the collaborative filter with users that have at least 50 donations in the data set. As a result, the training set for the collaborative filter is restricted to 8% of the original users, 70% of the companies, 49% of the causes, and 70% of the original countries where users making donations reside.