Fifty Shades of Gray, Matter: Using Bayesian Priors to Improve the Power of Whole-Brain Voxel- and Connexelwise Inferences

Krzysztof J. Gorgolewski, P. Bazin, Haakon G. Engen, D. Margulies
{"title":"Fifty Shades of Gray, Matter: Using Bayesian Priors to Improve the Power of Whole-Brain Voxel- and Connexelwise Inferences","authors":"Krzysztof J. Gorgolewski, P. Bazin, Haakon G. Engen, D. Margulies","doi":"10.1109/PRNI.2013.57","DOIUrl":null,"url":null,"abstract":"To increase the power of neuroimaging analyses, it is common practice to reduce the whole-brain search space to subset of hypothesis-driven regions-of-interest (ROIs). Rather than strictly constrain analyses, we propose to incorporate prior knowledge using probabilistic ROIs (pROIs) using a hierarchical Bayesian framework. Each voxel prior probability of being \"of-interest\" or \"of-non-interest\" is used to perform a weighted fit of a mixture model. We demonstrate the utility of this approach through simulations with various pROIs, and the applicability using a prior based on the NeuroSynth database search term \"emotion\" for thresholding the fMRI results of an emotion processing task. The modular structure of pROI correction facilitates the inclusion of other innovations in Bayesian mixture modeling, and offers a foundation for balancing between exploratory analyses without neglecting prior knowledge.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To increase the power of neuroimaging analyses, it is common practice to reduce the whole-brain search space to subset of hypothesis-driven regions-of-interest (ROIs). Rather than strictly constrain analyses, we propose to incorporate prior knowledge using probabilistic ROIs (pROIs) using a hierarchical Bayesian framework. Each voxel prior probability of being "of-interest" or "of-non-interest" is used to perform a weighted fit of a mixture model. We demonstrate the utility of this approach through simulations with various pROIs, and the applicability using a prior based on the NeuroSynth database search term "emotion" for thresholding the fMRI results of an emotion processing task. The modular structure of pROI correction facilitates the inclusion of other innovations in Bayesian mixture modeling, and offers a foundation for balancing between exploratory analyses without neglecting prior knowledge.
五十度灰,物质:使用贝叶斯先验来提高全脑体素和连接推理的能力
为了提高神经成像分析的能力,通常的做法是将全脑搜索空间减少到假设驱动的兴趣区域(roi)的子集。而不是严格的约束分析,我们建议结合先验知识使用概率roi (proi)使用层次贝叶斯框架。每个体素“感兴趣”或“不感兴趣”的先验概率用于执行混合模型的加权拟合。我们通过各种proi的模拟演示了这种方法的实用性,以及使用基于NeuroSynth数据库搜索术语“情感”的先验对情感处理任务的fMRI结果进行阈值处理的适用性。pROI校正的模块化结构有助于在贝叶斯混合建模中包含其他创新,并为在不忽略先验知识的情况下平衡探索性分析提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信