Fuzzy Q-learning Control for Temperature Systems

Y. Chen, L. Hung, M. Syamsudin
{"title":"Fuzzy Q-learning Control for Temperature Systems","authors":"Y. Chen, L. Hung, M. Syamsudin","doi":"10.1109/SNPD51163.2021.9704994","DOIUrl":null,"url":null,"abstract":"In this paper, the reinforcement learning algorithm applied to temperature control of the internet of things (IoT), which aims to develop a multi-purpose intelligent micro-power control switch to achieve advanced temperature control research. This paper is based on the fuzzy Q-learning PID control algorithm based on reinforcement learning, with LinkIt Smart 7688 Duo platform. The error value between the set temperature and the actual sensed temperature is exposed to the reinforcement learning PID control operation. Specifically, a temperature sensor will provide temperature feedback to the LinkIt Smart 7688 Duo in order to achieve the stated temperature control. Finally, the suggested control approach will be compared to PID control to illustrate its efficacy and performance.","PeriodicalId":235370,"journal":{"name":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD51163.2021.9704994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the reinforcement learning algorithm applied to temperature control of the internet of things (IoT), which aims to develop a multi-purpose intelligent micro-power control switch to achieve advanced temperature control research. This paper is based on the fuzzy Q-learning PID control algorithm based on reinforcement learning, with LinkIt Smart 7688 Duo platform. The error value between the set temperature and the actual sensed temperature is exposed to the reinforcement learning PID control operation. Specifically, a temperature sensor will provide temperature feedback to the LinkIt Smart 7688 Duo in order to achieve the stated temperature control. Finally, the suggested control approach will be compared to PID control to illustrate its efficacy and performance.
温度系统的模糊q学习控制
本文将强化学习算法应用于物联网(IoT)的温度控制,旨在开发一种多用途的智能微功率控制开关,实现先进的温度控制研究。本文采用基于强化学习的模糊q -学习PID控制算法,结合LinkIt Smart 7688 Duo平台。设定温度与实际感知温度之间的误差值暴露给强化学习PID控制操作。具体来说,温度传感器将为LinkIt Smart 7688 Duo提供温度反馈,以实现所述的温度控制。最后,将建议的控制方法与PID控制进行比较,以说明其有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信