Breaking the minsky-papert barrier for constant-depth circuits

Alexander A. Sherstov
{"title":"Breaking the minsky-papert barrier for constant-depth circuits","authors":"Alexander A. Sherstov","doi":"10.1145/2591796.2591871","DOIUrl":null,"url":null,"abstract":"The threshold degree of a Boolean function f is the minimum degree of a real polynomial p that represents f in sign: f(x) ≡ sgn p(x). In a seminal 1969 monograph, Minsky and Papert constructed a polynomial-size constant-depth {∧, ∨)-circuit in n variables with threshold degree Ω(n1/3). This bound underlies some of today's strongest results on constant-depth circuits. It has been an open problem (O'Donnell and Servedio, STOC 2003) to improve Minsky and Papert's bound to nΩ(1)+1/3. We give a detailed solution to this problem. For any fixed k ≥ 1, we construct an {∧, ∨)-formula of size n and depth k with threshold degree Ω(n k-1/2k-1). This lower bound nearly matches a known O(√n) bound for arbitrary formulas, and is exactly tight for regular formulas. Our result proves a conjecture due to O'Donnell and Servedio (STOC 2003) and a different conjecture due to Bun and Thaler (2013). Applications to communication complexity and computational learning are given.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The threshold degree of a Boolean function f is the minimum degree of a real polynomial p that represents f in sign: f(x) ≡ sgn p(x). In a seminal 1969 monograph, Minsky and Papert constructed a polynomial-size constant-depth {∧, ∨)-circuit in n variables with threshold degree Ω(n1/3). This bound underlies some of today's strongest results on constant-depth circuits. It has been an open problem (O'Donnell and Servedio, STOC 2003) to improve Minsky and Papert's bound to nΩ(1)+1/3. We give a detailed solution to this problem. For any fixed k ≥ 1, we construct an {∧, ∨)-formula of size n and depth k with threshold degree Ω(n k-1/2k-1). This lower bound nearly matches a known O(√n) bound for arbitrary formulas, and is exactly tight for regular formulas. Our result proves a conjecture due to O'Donnell and Servedio (STOC 2003) and a different conjecture due to Bun and Thaler (2013). Applications to communication complexity and computational learning are given.
打破定深电路的明斯基纸障碍
布尔函数f的阈值度是用符号表示f的实多项式p的最小度:f(x)≡sgn p(x)。在1969年的一篇开创性的专著中,Minsky和Papert在n个变量中构造了一个多项式大小的、具有阈值度Ω(n1/3)的恒深{∧,∨)电路。这个界限是目前恒深电路中一些最强有力的结果的基础。这一直是一个开放的问题(O'Donnell和Servedio, STOC 2003),以提高明斯基和Papert的约束nΩ(1)+1/3。我们对这个问题给出了详细的解决方案。对于任意固定k≥1,我们构造一个{∧,∨)大小为n,深度为k,阈值度为Ω(n k-1/2k-1)的公式。对于任意公式,这个下界几乎与已知的O(√n)的下界匹配,对于正则公式,它是完全紧密的。我们的结果证明了O'Donnell和Servedio (STOC 2003)提出的一个猜想,以及Bun和Thaler(2013)提出的另一个猜想。给出了在通信复杂性和计算学习方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信