A Remark on Rainbow 6-Cycles in Hypercubes

Chen Hao, Weihua Yang
{"title":"A Remark on Rainbow 6-Cycles in Hypercubes","authors":"Chen Hao, Weihua Yang","doi":"10.1142/S012962641850007X","DOIUrl":null,"url":null,"abstract":"We call an edge-coloring of a graph [Formula: see text] a rainbow coloring if the edges of [Formula: see text] are colored with distinct colors. For every even positive integer [Formula: see text], let [Formula: see text] denote the minimum number of colors required to color the edges of the [Formula: see text]-dimensional cube [Formula: see text], so that every copy of [Formula: see text] is rainbow. Faudree et al. [6] proved that [Formula: see text] for [Formula: see text] or [Formula: see text]. Mubayi et al. [8] showed that [Formula: see text]. In this note, we show that [Formula: see text]. Moreover, we obtain the number of 6-cycles of [Formula: see text].","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012962641850007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We call an edge-coloring of a graph [Formula: see text] a rainbow coloring if the edges of [Formula: see text] are colored with distinct colors. For every even positive integer [Formula: see text], let [Formula: see text] denote the minimum number of colors required to color the edges of the [Formula: see text]-dimensional cube [Formula: see text], so that every copy of [Formula: see text] is rainbow. Faudree et al. [6] proved that [Formula: see text] for [Formula: see text] or [Formula: see text]. Mubayi et al. [8] showed that [Formula: see text]. In this note, we show that [Formula: see text]. Moreover, we obtain the number of 6-cycles of [Formula: see text].
超立方体中彩虹6环的一个注解
如果图形的边缘用不同的颜色着色,我们称其为彩虹着色[公式:见文]。对于每一个偶数正整数[公式:见文],让[公式:见文]表示为[公式:见文]维立方体[公式:见文]的边缘上色所需的最小颜色数,使[公式:见文]的每个副本都是彩虹。Faudree等人[6]证明了[公式:见文]对于[公式:见文]或[公式:见文]。Mubayi等[8]表明[公式:见正文]。在本文中,我们展示了[公式:见文本]。进而得到[公式:见文]的6圈数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信