Unsupervised scene detection in Olympic video using multi-modal chains

Gert-Jan Poulisse, Marie-Francine Moens
{"title":"Unsupervised scene detection in Olympic video using multi-modal chains","authors":"Gert-Jan Poulisse, Marie-Francine Moens","doi":"10.1109/CBMI.2011.5972529","DOIUrl":null,"url":null,"abstract":"This paper presents a novel unsupervised method for identifying the semantic structure in long semi-structured video streams. We identify ‘chains’, local clusters of repeated features from both the video stream and audio transcripts. Each chain serves as an indicator that the temporal interval it demarcates is part of the same semantic event. By layering all the chains over each other, dense regions emerge from the overlapping chains, from which we can identify the semantic structure of the video. We analyze two clustering strategies that accomplish this task.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a novel unsupervised method for identifying the semantic structure in long semi-structured video streams. We identify ‘chains’, local clusters of repeated features from both the video stream and audio transcripts. Each chain serves as an indicator that the temporal interval it demarcates is part of the same semantic event. By layering all the chains over each other, dense regions emerge from the overlapping chains, from which we can identify the semantic structure of the video. We analyze two clustering strategies that accomplish this task.
基于多模态链的奥运视频无监督场景检测
本文提出了一种新的无监督方法来识别长半结构化视频流中的语义结构。我们从视频流和音频文本中识别“链”,即重复特征的局部集群。每个链都作为一个指示器,表明它所划分的时间间隔是同一语义事件的一部分。通过将所有的链相互叠加,密集的区域从重叠的链中出现,我们可以从中识别视频的语义结构。我们分析了完成此任务的两种聚类策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信