In-Memory Computing Primitive for Sensor Data Fusion in 28 nm HKMG FeFET Technology

K. Ni, B. Grisafe, W. Chakraborty, A. Saha, S. Dutta, M. Jerry, J. Smith, S. Gupta, S. Datta
{"title":"In-Memory Computing Primitive for Sensor Data Fusion in 28 nm HKMG FeFET Technology","authors":"K. Ni, B. Grisafe, W. Chakraborty, A. Saha, S. Dutta, M. Jerry, J. Smith, S. Gupta, S. Datta","doi":"10.1109/IEDM.2018.8614527","DOIUrl":null,"url":null,"abstract":"In this work, we exploit the spatio-temporal switching dynamics of ferroelectric polarization to realize an energy-efficient, and massively-parallel in-memory computational primitive for at-node sensor data fusion and analytics based on an industrial 28nm HKMG FeFET technology [1]. We demonstrate: (i) the spatio-temporal dynamics of polarization switching in HfO2-based ferroelectrics under the stimuli of sub-coercive voltage pulses using experiments and phase-field modeling; (ii) an inherent rectifying conductance accumulation characteristic in FeFET with a large dynamic range of $G_{\\max}/G_{\\min} > 100$ in the case of 3.0V, 50ns gate pulses; (iii) transition to more abrupt accumulation characteristics due to single/few domain polarization switching in scaled FeFET (34nm LG); and (iv) successful detection of physiological anomalies from realworld multi-modal sensor data streams.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2018.8614527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this work, we exploit the spatio-temporal switching dynamics of ferroelectric polarization to realize an energy-efficient, and massively-parallel in-memory computational primitive for at-node sensor data fusion and analytics based on an industrial 28nm HKMG FeFET technology [1]. We demonstrate: (i) the spatio-temporal dynamics of polarization switching in HfO2-based ferroelectrics under the stimuli of sub-coercive voltage pulses using experiments and phase-field modeling; (ii) an inherent rectifying conductance accumulation characteristic in FeFET with a large dynamic range of $G_{\max}/G_{\min} > 100$ in the case of 3.0V, 50ns gate pulses; (iii) transition to more abrupt accumulation characteristics due to single/few domain polarization switching in scaled FeFET (34nm LG); and (iv) successful detection of physiological anomalies from realworld multi-modal sensor data streams.
28nm HKMG ffet技术中传感器数据融合的内存计算原语
在这项工作中,我们利用铁电极化的时空切换动力学来实现基于工业28nm HKMG ffet技术的节点传感器数据融合和分析的节能、大规模并行内存计算原语[1]。通过实验和相场模拟,研究了亚矫顽力电压脉冲刺激下hfo2基铁电体极化开关的时空动力学;(ii)在3.0V, 50ns栅极脉冲的情况下,ffet固有的整流电导积累特性具有$G_{\max}/G_{\min} > 100$的大动态范围;(iii)由于缩放FeFET (34nm LG)的单/少畴极化开关,过渡到更突然的积累特性;(iv)从现实世界的多模态传感器数据流中成功检测生理异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信