NOx Prediction Method Based on Deep Extreme Learning Machine

Ying Li, Fanjun Li
{"title":"NOx Prediction Method Based on Deep Extreme Learning Machine","authors":"Ying Li, Fanjun Li","doi":"10.1109/ICCIA.2018.00025","DOIUrl":null,"url":null,"abstract":"Real-time prediction of NOx is important for the control of NOx emission from a coal-fired power plant. This paper presents a NOx prediction method based on deep extreme learning machine. First, an improved deep extreme learning machine is proposed. Then, a NOx prediction model is designed based on the proposed method. Finally, the model is evaluated by using the actual data. Simulations results show that the proposed method is effective.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time prediction of NOx is important for the control of NOx emission from a coal-fired power plant. This paper presents a NOx prediction method based on deep extreme learning machine. First, an improved deep extreme learning machine is proposed. Then, a NOx prediction model is designed based on the proposed method. Finally, the model is evaluated by using the actual data. Simulations results show that the proposed method is effective.
基于深度极限学习机的NOx预测方法
NOx实时预测对于控制燃煤电厂NOx排放具有重要意义。提出了一种基于深度极限学习机的NOx预测方法。首先,提出了一种改进的深度极限学习机。在此基础上,设计了NOx预测模型。最后,用实际数据对模型进行了评价。仿真结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信