Image classification of lung nodules by requiring the integration of Attention Mechanism into ResNet model

Khai Dinh Lai, T. Le, T. T. Nguyen
{"title":"Image classification of lung nodules by requiring the integration of Attention Mechanism into ResNet model","authors":"Khai Dinh Lai, T. Le, T. T. Nguyen","doi":"10.1109/KSE56063.2022.9953758","DOIUrl":null,"url":null,"abstract":"In this research, in order to accurately diagnose lung nodules using the LUNA16 dataset, a deep learning model, ResNetl01, is analyzed and chosen. The paper includes: (1) demonstrating the efficiency of the ResNetl01 network on the LUNA16; (2) analyzing the benefits and drawbacks of Attention modules before selecting the best Attention module to integrate into the ResNetl01 model in the classification of lung nodules in CT scans challenge; (3) comparing the efficacy of the proposed model to prior outcomes to demonstrate the model’s feasibility.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, in order to accurately diagnose lung nodules using the LUNA16 dataset, a deep learning model, ResNetl01, is analyzed and chosen. The paper includes: (1) demonstrating the efficiency of the ResNetl01 network on the LUNA16; (2) analyzing the benefits and drawbacks of Attention modules before selecting the best Attention module to integrate into the ResNetl01 model in the classification of lung nodules in CT scans challenge; (3) comparing the efficacy of the proposed model to prior outcomes to demonstrate the model’s feasibility.
将注意机制整合到ResNet模型中的肺结节图像分类
为了利用LUNA16数据集准确诊断肺结节,本研究对深度学习模型resnet01进行了分析和选择。本文包括:(1)在LUNA16上演示ResNetl01网络的效率;(2)分析各Attention模块的优缺点,选择最佳的Attention模块整合到resnet01模型中,在CT扫描中对肺结节进行分类挑战;(3)将提出的模型的有效性与先前的结果进行比较,以证明模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信