A Parallelized Network Traffic Classification Based on Hidden Markov Model

X. Mu, Wenjun Wu
{"title":"A Parallelized Network Traffic Classification Based on Hidden Markov Model","authors":"X. Mu, Wenjun Wu","doi":"10.1109/CyberC.2011.27","DOIUrl":null,"url":null,"abstract":"This paper implemented a network traffic classification method on the basis of Guassian Mixture Model-Hidden Markov Model using packet-level properties in network traffic flows (PLGMM-HMM). Our model firstly builds PLGMM-HMMs via two packet-level properties, inter packet time and payload size, respectively; then, we construct the estimation function by computing the F-Measure value through classifying another training set using the PLGMM-HMMs. Hadoop Streaming based MapReduce has been evaluated while performing our classification experiment. Results show that our PLGMM-HMM based classification method could obtain considerable accuracy, giving out the accuracy over 90% on collected datasets, and comparatively outperforming classifiers based on HMMs with variables obeying other distributions. It is recommended that this framework could be applied to other machine learning methods as a multi-classifier template.","PeriodicalId":227472,"journal":{"name":"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper implemented a network traffic classification method on the basis of Guassian Mixture Model-Hidden Markov Model using packet-level properties in network traffic flows (PLGMM-HMM). Our model firstly builds PLGMM-HMMs via two packet-level properties, inter packet time and payload size, respectively; then, we construct the estimation function by computing the F-Measure value through classifying another training set using the PLGMM-HMMs. Hadoop Streaming based MapReduce has been evaluated while performing our classification experiment. Results show that our PLGMM-HMM based classification method could obtain considerable accuracy, giving out the accuracy over 90% on collected datasets, and comparatively outperforming classifiers based on HMMs with variables obeying other distributions. It is recommended that this framework could be applied to other machine learning methods as a multi-classifier template.
基于隐马尔可夫模型的并行网络流量分类
基于高斯混合模型-隐马尔可夫模型,利用网络流量的包级特性实现了一种网络流量分类方法(PLGMM-HMM)。该模型首先通过两个包级属性(包间时间和有效载荷大小)构建plgmm - hmm;然后,利用plgmm - hmm对另一个训练集进行分类,通过计算F-Measure值来构造估计函数。基于Hadoop Streaming的MapReduce在执行我们的分类实验时进行了评估。结果表明,基于PLGMM-HMM的分类方法可以获得较高的准确率,在收集到的数据集上准确率达到90%以上,相对优于基于其他分布的hmm分类器。建议将该框架作为多分类器模板应用于其他机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信