Tatiana V. Nizkaya, Anna S. Gekova, J. Harting, E. S. Asmolov, O. Vinogradova
{"title":"Inertial migration of oblate spheroids in a plane channel","authors":"Tatiana V. Nizkaya, Anna S. Gekova, J. Harting, E. S. Asmolov, O. Vinogradova","doi":"10.1063/5.0028353","DOIUrl":null,"url":null,"abstract":"We study the inertial migration of neutrally buoyant oblate spheroids in a plane channel at moderate Reynolds numbers using lattice Boltzmann simulations. Spheroids reorient to perform a log-rolling motion with their minor axis in the vorticity direction. We demonstrate that, for moderate aspect ratios, the equilibrium positions relative to the channel walls for such a stable motion depend only on the equatorial radius $a$ of the spheroid, and the inertial lift force on the spheroid is proportional to $a^3b$, where $b$ is the polar radius. Therefore, the lift force on the spheroid can be expressed in terms of that for the sphere of the same $a$.","PeriodicalId":328276,"journal":{"name":"arXiv: Fluid Dynamics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0028353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We study the inertial migration of neutrally buoyant oblate spheroids in a plane channel at moderate Reynolds numbers using lattice Boltzmann simulations. Spheroids reorient to perform a log-rolling motion with their minor axis in the vorticity direction. We demonstrate that, for moderate aspect ratios, the equilibrium positions relative to the channel walls for such a stable motion depend only on the equatorial radius $a$ of the spheroid, and the inertial lift force on the spheroid is proportional to $a^3b$, where $b$ is the polar radius. Therefore, the lift force on the spheroid can be expressed in terms of that for the sphere of the same $a$.