Predictive model for compressor impeller tightness

V. Pechenin, E. Pechenina, M. Bolotov
{"title":"Predictive model for compressor impeller tightness","authors":"V. Pechenin, E. Pechenina, M. Bolotov","doi":"10.1109/ITNT57377.2023.10138949","DOIUrl":null,"url":null,"abstract":"A model has been developed to predict the angular reversals of the blades in the impeller that occur during assembly. The calculated angles characterize the tightness in the connections of the blade end flanges. The model inputs data on geometry deviations from part inspection operations. The model uses the random forest method, and the model was trained on a set of numerical experiments performed in the ANSYS environment. According to experimental findings, the ANSYS model's error does not exceed 10 angular minutes, and the regression model's overall error does not exceed 20 angular minutes.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10138949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A model has been developed to predict the angular reversals of the blades in the impeller that occur during assembly. The calculated angles characterize the tightness in the connections of the blade end flanges. The model inputs data on geometry deviations from part inspection operations. The model uses the random forest method, and the model was trained on a set of numerical experiments performed in the ANSYS environment. According to experimental findings, the ANSYS model's error does not exceed 10 angular minutes, and the regression model's overall error does not exceed 20 angular minutes.
压缩机叶轮密封性预测模型
建立了一个模型来预测叶轮中叶片在装配过程中发生的角度反转。计算的角度表征了叶片端缘连接的紧密性。模型输入零件检验操作的几何偏差数据。该模型采用随机森林方法,并在ANSYS环境下进行了一组数值实验对模型进行了训练。实验结果表明,ANSYS模型的误差不超过10角分,回归模型的总体误差不超过20角分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信