Training Data Augmentation for Code-Mixed Translation

Abhirut Gupta, Aditya Vavre, Sunita Sarawagi
{"title":"Training Data Augmentation for Code-Mixed Translation","authors":"Abhirut Gupta, Aditya Vavre, Sunita Sarawagi","doi":"10.18653/V1/2021.NAACL-MAIN.459","DOIUrl":null,"url":null,"abstract":"Machine translation of user-generated code-mixed inputs to English is of crucial importance in applications like web search and targeted advertising. We address the scarcity of parallel training data for training such models by designing a strategy of converting existing non-code-mixed parallel data sources to code-mixed parallel data. We present an m-BERT based procedure whose core learnable component is a ternary sequence labeling model, that can be trained with a limited code-mixed corpus alone. We show a 5.8 point increase in BLEU on heavily code-mixed sentences by training a translation model using our data augmentation strategy on an Hindi-English code-mixed translation task.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/2021.NAACL-MAIN.459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Machine translation of user-generated code-mixed inputs to English is of crucial importance in applications like web search and targeted advertising. We address the scarcity of parallel training data for training such models by designing a strategy of converting existing non-code-mixed parallel data sources to code-mixed parallel data. We present an m-BERT based procedure whose core learnable component is a ternary sequence labeling model, that can be trained with a limited code-mixed corpus alone. We show a 5.8 point increase in BLEU on heavily code-mixed sentences by training a translation model using our data augmentation strategy on an Hindi-English code-mixed translation task.
代码混合翻译的训练数据增强
机器将用户生成的代码混合输入翻译成英语在网络搜索和目标广告等应用中至关重要。我们通过设计一种将现有的非代码混合并行数据源转换为代码混合并行数据的策略,解决了用于训练此类模型的并行训练数据的稀缺性。我们提出了一个基于m-BERT的过程,其核心可学习成分是一个三元序列标记模型,该模型可以仅用有限的代码混合语料库进行训练。通过在印地语-英语代码混合翻译任务上使用我们的数据增强策略训练翻译模型,我们发现BLEU在严重代码混合的句子上增加了5.8个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信