Viola-Jones Algorithm for Face Detection using Wider Face Dataset

Sumanto, B. Wijonarko, Muhammad Qommarudin, Aji Sudibyo, Pudji Widodo, Afit Muhammad Lukman
{"title":"Viola-Jones Algorithm for Face Detection using Wider Face Dataset","authors":"Sumanto, B. Wijonarko, Muhammad Qommarudin, Aji Sudibyo, Pudji Widodo, Afit Muhammad Lukman","doi":"10.1109/CITSM56380.2022.9935830","DOIUrl":null,"url":null,"abstract":"Face detection has been one of the most explored problems in computer vision for several years. Using the WIDER FACES data set, this study investigates how the Viola-Jones method can be used to identify faces in 179 photos and how it performs compared to other face detection algorithms. In a previous study for face detection using Viola-jones, the highest accuracy results were obtained at 90.9% for facial images and 75.5% for non-face images. In this study, the Viola-Jones approach had a 100 percent success rate. This approach will be used in the MATLAB algorithm for face identification to get better results than currently available. Experiments using two classes had promising results.","PeriodicalId":342813,"journal":{"name":"2022 10th International Conference on Cyber and IT Service Management (CITSM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Cyber and IT Service Management (CITSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITSM56380.2022.9935830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Face detection has been one of the most explored problems in computer vision for several years. Using the WIDER FACES data set, this study investigates how the Viola-Jones method can be used to identify faces in 179 photos and how it performs compared to other face detection algorithms. In a previous study for face detection using Viola-jones, the highest accuracy results were obtained at 90.9% for facial images and 75.5% for non-face images. In this study, the Viola-Jones approach had a 100 percent success rate. This approach will be used in the MATLAB algorithm for face identification to get better results than currently available. Experiments using two classes had promising results.
基于更宽人脸数据集的Viola-Jones人脸检测算法
多年来,人脸检测一直是计算机视觉领域研究最多的问题之一。使用WIDER FACES数据集,本研究探讨了如何使用Viola-Jones方法识别179张照片中的人脸,以及与其他人脸检测算法相比,该方法的表现如何。在之前的一项使用Viola-jones进行的人脸检测研究中,人脸图像的准确率最高,为90.9%,非人脸图像的准确率最高,为75.5%。在这项研究中,维奥拉-琼斯方法有100%的成功率。这种方法将在MATLAB算法中用于人脸识别,得到比目前更好的结果。使用两个类的实验取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信