A. Benjebbour, Anxin Li, Y. Kishiyama, Huiling Jiang, Takehiro Nakamura
{"title":"System-level performance of downlink NOMA combined with SU-MIMO for future LTE enhancements","authors":"A. Benjebbour, Anxin Li, Y. Kishiyama, Huiling Jiang, Takehiro Nakamura","doi":"10.1109/GLOCOMW.2014.7063515","DOIUrl":null,"url":null,"abstract":"This paper investigates the system-level performance of downlink non-orthogonal multiple access (NOMA) combined with single user MIMO (SU-MIMO) for future LTE (Long-Term Evolution) enhancements. The goal is to clarify the performance gains of NOMA combined with SU-MIMO transmission, taking into account the LTE radio interface such as frequency-domain scheduling, adaptive modulation and coding (AMC), and NOMA specific functionalities such as multi-user pairing/ordering and transmit power allocation. In particular, we propose practical schemes to efficiently combine NOMA with open-loop SU-MIMO (Transmission Mode 3: TM3) and closed-loop SU-MIMO (Transmission Mode 4: TM4) specified in LTE. Based on computer simulations, we compare NOMA performance gains for different granularities of scheduling and MCS (modulation and coding scheme) selection, for both genie-aided channel quality information (CQI) estimation and approximated CQI estimation, and using different number of power sets. Evaluation results show that NOMA can still provide a hefty portion of its expected gains even with approximated CQI estimation and limited number of power sets, and also when LTE compliant subband scheduling and wideband MCS are applied.","PeriodicalId":354340,"journal":{"name":"2014 IEEE Globecom Workshops (GC Wkshps)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2014.7063515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
This paper investigates the system-level performance of downlink non-orthogonal multiple access (NOMA) combined with single user MIMO (SU-MIMO) for future LTE (Long-Term Evolution) enhancements. The goal is to clarify the performance gains of NOMA combined with SU-MIMO transmission, taking into account the LTE radio interface such as frequency-domain scheduling, adaptive modulation and coding (AMC), and NOMA specific functionalities such as multi-user pairing/ordering and transmit power allocation. In particular, we propose practical schemes to efficiently combine NOMA with open-loop SU-MIMO (Transmission Mode 3: TM3) and closed-loop SU-MIMO (Transmission Mode 4: TM4) specified in LTE. Based on computer simulations, we compare NOMA performance gains for different granularities of scheduling and MCS (modulation and coding scheme) selection, for both genie-aided channel quality information (CQI) estimation and approximated CQI estimation, and using different number of power sets. Evaluation results show that NOMA can still provide a hefty portion of its expected gains even with approximated CQI estimation and limited number of power sets, and also when LTE compliant subband scheduling and wideband MCS are applied.