A fast Kalman filter for time-lapse electrical resistivity tomography

A. Saibaba, E. Miller, P. Kitanidis
{"title":"A fast Kalman filter for time-lapse electrical resistivity tomography","authors":"A. Saibaba, E. Miller, P. Kitanidis","doi":"10.1109/IGARSS.2014.6947146","DOIUrl":null,"url":null,"abstract":"We present a reduced complexity algorithm for time-lapse Electrical Resistivity Tomography (ERT) based on an extended Kalman filter. The key idea of the fast algorithm is an efficient representation of state covariance matrix at each step as a weighted combination of the system noise covariance matrix and a low-rank perturbation term. We propose an efficient algorithm for updating the weights and the basis of the low-rank perturbation. The overall computational cost at each iteration is O(Nnm) and storage cost O(N), where N is the number of grid points, and nm is the number of measurements. The performance of this algorithm is demonstrated on a challenging application of monitoring the CO2 plume using synthetic ERT data.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a reduced complexity algorithm for time-lapse Electrical Resistivity Tomography (ERT) based on an extended Kalman filter. The key idea of the fast algorithm is an efficient representation of state covariance matrix at each step as a weighted combination of the system noise covariance matrix and a low-rank perturbation term. We propose an efficient algorithm for updating the weights and the basis of the low-rank perturbation. The overall computational cost at each iteration is O(Nnm) and storage cost O(N), where N is the number of grid points, and nm is the number of measurements. The performance of this algorithm is demonstrated on a challenging application of monitoring the CO2 plume using synthetic ERT data.
延时电阻率层析成像的快速卡尔曼滤波
提出了一种基于扩展卡尔曼滤波的时延电阻率层析成像(ERT)算法。快速算法的关键思想是将每一步的状态协方差矩阵有效地表示为系统噪声协方差矩阵和低秩扰动项的加权组合。我们提出了一种有效的算法来更新低秩扰动的权重和基础。每次迭代的总计算成本为O(Nnm),存储成本为O(N),其中N为网格点的个数,nm为测量的个数。该算法的性能在使用合成ERT数据监测CO2羽流的具有挑战性的应用中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信