Revisiting Deep Learning Parallelism: Fine-Grained Inference Engine Utilizing Online Arithmetic

Ameer Abdelhadi, Lesley Shannon
{"title":"Revisiting Deep Learning Parallelism: Fine-Grained Inference Engine Utilizing Online Arithmetic","authors":"Ameer Abdelhadi, Lesley Shannon","doi":"10.1109/ICFPT47387.2019.00073","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the parallelism of neural inference engines. In a departure from the conventional coarse-grained neuron-level parallelism, we propose a synapse-level parallelism by performing highly parallel fine-grained neural computations. Our method employs online Most Significant Digit First (MSDF) digit-serial arithmetic to enable early termination of the computation. Using online MSDF bit-serial arithmetic for DNN inference (1) enables early termination of ineffectual computations, (2) enables mixed-precision operations (3) allows higher frequencies without compromising latency, and (4) alleviates the infamous weights memory bottleneck. The proposed technique is efficiently implemented on FPGAs due to their concurrent fine-grained nature, and the availability of on-chip distributed SRAM blocks. Compared to other bit-serial methods, our Fine-Grained Inference Engine (FGIE) improves energy efficiency by ×1.8 while having similar performance gains.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we revisit the parallelism of neural inference engines. In a departure from the conventional coarse-grained neuron-level parallelism, we propose a synapse-level parallelism by performing highly parallel fine-grained neural computations. Our method employs online Most Significant Digit First (MSDF) digit-serial arithmetic to enable early termination of the computation. Using online MSDF bit-serial arithmetic for DNN inference (1) enables early termination of ineffectual computations, (2) enables mixed-precision operations (3) allows higher frequencies without compromising latency, and (4) alleviates the infamous weights memory bottleneck. The proposed technique is efficiently implemented on FPGAs due to their concurrent fine-grained nature, and the availability of on-chip distributed SRAM blocks. Compared to other bit-serial methods, our Fine-Grained Inference Engine (FGIE) improves energy efficiency by ×1.8 while having similar performance gains.
回顾深度学习并行性:利用在线算法的细粒度推理引擎
在本文中,我们重新审视了神经推理引擎的并行性。与传统的粗粒度神经元级并行不同,我们通过执行高度并行的细粒度神经计算,提出了突触级并行。我们的方法采用在线最高有效数字优先(MSDF)数字串行算法,使计算能够提前终止。使用在线MSDF位串行算法进行DNN推理(1)可以早期终止无效的计算,(2)可以实现混合精度操作(3)允许更高的频率而不影响延迟,(4)减轻了臭名昭著的权重内存瓶颈。由于fpga的并发细粒度特性和片上分布式SRAM块的可用性,该技术可以有效地在fpga上实现。与其他位串行方法相比,我们的细粒度推理引擎(FGIE)通过×1.8提高了能源效率,同时具有类似的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信