Statistical and computational guarantees for the Baum-Welch algorithm

Fanny Yang, Sivaraman Balakrishnan, M. Wainwright
{"title":"Statistical and computational guarantees for the Baum-Welch algorithm","authors":"Fanny Yang, Sivaraman Balakrishnan, M. Wainwright","doi":"10.1109/ALLERTON.2015.7447067","DOIUrl":null,"url":null,"abstract":"The Hidden Markov Model (HMM) is one of the main-stays of statistical modeling of discrete time series and is widely used in many applications. Estimating an HMM from its observation process is often addressed via the Baum-Welch algorithm, which performs well empirically when initialized reasonably close to the truth. This behavior could not be explained by existing theory which predicts susceptibility to bad local optima. In this paper we aim at closing the gap and provide a framework to characterize a sufficient basin of attraction for any global optimum in which Baum-Welch is guaranteed to converge linearly to an “optimally” small ball around the global optimum. The framework is then used to determine the linear rate of convergence and a sufficient initialization region for Baum-Welch applied on a two component isotropic hidden Markov mixture of Gaussians.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The Hidden Markov Model (HMM) is one of the main-stays of statistical modeling of discrete time series and is widely used in many applications. Estimating an HMM from its observation process is often addressed via the Baum-Welch algorithm, which performs well empirically when initialized reasonably close to the truth. This behavior could not be explained by existing theory which predicts susceptibility to bad local optima. In this paper we aim at closing the gap and provide a framework to characterize a sufficient basin of attraction for any global optimum in which Baum-Welch is guaranteed to converge linearly to an “optimally” small ball around the global optimum. The framework is then used to determine the linear rate of convergence and a sufficient initialization region for Baum-Welch applied on a two component isotropic hidden Markov mixture of Gaussians.
鲍姆-韦尔奇算法的统计和计算保证
隐马尔可夫模型(HMM)是离散时间序列统计建模的主要方法之一,有着广泛的应用。从观察过程中估计HMM通常通过Baum-Welch算法来解决,当初始化合理地接近事实时,该算法在经验上表现良好。这种行为不能用现有的预测对坏局部最优的易感性的理论来解释。在本文中,我们的目标是缩小这一差距,并提供一个框架来表征任何全局最优的足够吸引力盆地,其中Baum-Welch保证在全局最优周围线性收敛到一个“最优”小球。然后,该框架用于确定线性收敛速率和一个足够的初始化区域,用于双分量各向同性隐藏马尔可夫混合高斯函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信