Target Detection using Polarimetric Distributed MIMO Radar in Heterogeneous Compound-Gaussian Clutter

Zhiwen Liu, Yang Yang, Yan Xiang, K. Zhao, Shuli Shi, Yougen Xu
{"title":"Target Detection using Polarimetric Distributed MIMO Radar in Heterogeneous Compound-Gaussian Clutter","authors":"Zhiwen Liu, Yang Yang, Yan Xiang, K. Zhao, Shuli Shi, Yougen Xu","doi":"10.1145/3408127.3408146","DOIUrl":null,"url":null,"abstract":"A polarimetric distributed MIMO radar detector in heterogeneous compound Gaussian clutter is proposed. Based on the modified signal model of the polarimetric distributed MIMO radar, the inverse Gamma distribution assumption on the clutter texture and the complex inverse Wishart distribution assumption on the speckle clutter covariance matrix, the secondary data is used to obtain the maximum posteriori estimation of the texture so as to avoid the integral operation in test statistic. The Bayesian knowledge-aided polarimetric generalized likelihood ratio detector is then acquired. Simulation results show that the proposed detector has a better detection performance than the existing detector.","PeriodicalId":383401,"journal":{"name":"Proceedings of the 2020 4th International Conference on Digital Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 4th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3408127.3408146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A polarimetric distributed MIMO radar detector in heterogeneous compound Gaussian clutter is proposed. Based on the modified signal model of the polarimetric distributed MIMO radar, the inverse Gamma distribution assumption on the clutter texture and the complex inverse Wishart distribution assumption on the speckle clutter covariance matrix, the secondary data is used to obtain the maximum posteriori estimation of the texture so as to avoid the integral operation in test statistic. The Bayesian knowledge-aided polarimetric generalized likelihood ratio detector is then acquired. Simulation results show that the proposed detector has a better detection performance than the existing detector.
极化分布MIMO雷达在非均匀复合高斯杂波条件下的目标检测
提出了一种非均质复合高斯杂波极化分布MIMO雷达探测器。基于改进的极化分布MIMO雷达信号模型,杂波纹理的Gamma逆分布假设和散斑杂波协方差矩阵的Wishart复逆分布假设,利用二次数据对杂波纹理进行最大后验估计,避免检验统计量中的积分运算。得到了贝叶斯知识辅助极化广义似然比检测器。仿真结果表明,该检测器比现有检测器具有更好的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信