A Communication-Avoiding Parallel Algorithm for the Symmetric Eigenvalue Problem

Edgar Solomonik, Grey Ballard, J. Demmel, T. Hoefler
{"title":"A Communication-Avoiding Parallel Algorithm for the Symmetric Eigenvalue Problem","authors":"Edgar Solomonik, Grey Ballard, J. Demmel, T. Hoefler","doi":"10.1145/3087556.3087561","DOIUrl":null,"url":null,"abstract":"Many large-scale scientific computations require eigenvalue solvers in a scaling regime where efficiency is limited by data movement. We introduce a parallel algorithm for computing the eigenvalues of a dense symmetric matrix, which performs asymptotically less communication than previously known approaches. We provide analysis in the Bulk Synchronous Parallel (BSP) model with additional consideration for communication between a local memory and cache. Given sufficient memory to store c copies of the symmetric matrix, our algorithm requires \\Theta(\\sqrt{c}) less interprocessor communication than previously known algorithms, for any c\\leq p^{1/3} when using p processors. The algorithm first reduces the dense symmetric matrix to a banded matrix with the same eigenvalues. Subsequently, the algorithm employs successive reduction to O(\\log p) thinner banded matrices. We employ two new parallel algorithms that achieve lower communication costs for the full-to-band and band-to-band reductions. Both of these algorithms leverage a novel QR factorization algorithm for rectangular matrices.","PeriodicalId":162994,"journal":{"name":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087556.3087561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Many large-scale scientific computations require eigenvalue solvers in a scaling regime where efficiency is limited by data movement. We introduce a parallel algorithm for computing the eigenvalues of a dense symmetric matrix, which performs asymptotically less communication than previously known approaches. We provide analysis in the Bulk Synchronous Parallel (BSP) model with additional consideration for communication between a local memory and cache. Given sufficient memory to store c copies of the symmetric matrix, our algorithm requires \Theta(\sqrt{c}) less interprocessor communication than previously known algorithms, for any c\leq p^{1/3} when using p processors. The algorithm first reduces the dense symmetric matrix to a banded matrix with the same eigenvalues. Subsequently, the algorithm employs successive reduction to O(\log p) thinner banded matrices. We employ two new parallel algorithms that achieve lower communication costs for the full-to-band and band-to-band reductions. Both of these algorithms leverage a novel QR factorization algorithm for rectangular matrices.
对称特征值问题的避免通信并行算法
许多大规模的科学计算需要特征值求解器在一个尺度制度,效率是有限的数据移动。我们介绍了一种计算密集对称矩阵特征值的并行算法,它比以前已知的方法执行渐近的通信更少。我们在批量同步并行(BSP)模型中提供了分析,并额外考虑了本地内存和缓存之间的通信。给定足够的内存来存储对称矩阵的c个副本,我们的算法需要\Theta (\sqrt{c})比以前已知的算法更少的处理器间通信,当使用p个处理器时,对于任何c \leq p^{1/3}。该算法首先将密集对称矩阵化简为具有相同特征值的带状矩阵。随后,算法采用逐次约简到O(\log p)个更细的带状矩阵。我们采用了两种新的并行算法,实现了全到带和带到带减少的更低通信成本。这两种算法都利用了一种新的矩形矩阵QR分解算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信