Geometric Compression of Orientation Signals for Fast Gesture Analysis

A. Sivakumar, Rushil Anirudh, P. Turaga
{"title":"Geometric Compression of Orientation Signals for Fast Gesture Analysis","authors":"A. Sivakumar, Rushil Anirudh, P. Turaga","doi":"10.1109/DCC.2015.39","DOIUrl":null,"url":null,"abstract":"This paper concerns itself with compression strategies for orientation signals, seen as signals evolving on the space of quaternion's. The compression techniques extend classical signal approximation strategies used in data mining, by explicitly taking into account the quotient-space properties of the quaternion space. The approximation techniques are applied to the case of human gesture recognition from cell phone-based orientation sensors. Results indicate that the proposed approach results in high recognition accuracies, with low storage requirements, with the geometric computations providing added robustness than classical vector-space computations.","PeriodicalId":313156,"journal":{"name":"2015 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2015.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns itself with compression strategies for orientation signals, seen as signals evolving on the space of quaternion's. The compression techniques extend classical signal approximation strategies used in data mining, by explicitly taking into account the quotient-space properties of the quaternion space. The approximation techniques are applied to the case of human gesture recognition from cell phone-based orientation sensors. Results indicate that the proposed approach results in high recognition accuracies, with low storage requirements, with the geometric computations providing added robustness than classical vector-space computations.
快速手势分析中方向信号的几何压缩
本文研究了方向信号的压缩策略,方向信号被看作是在四元数空间上演化的信号。通过显式地考虑四元数空间的商空间性质,压缩技术扩展了数据挖掘中使用的经典信号逼近策略。将逼近技术应用于基于手机方向传感器的人体手势识别。结果表明,该方法识别精度高,存储空间要求低,几何计算比传统的向量空间计算具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信