Recursive parameter estimation of a mechanical system in frequency domain

N. Nevaranta, J. Montonen, T. Lindh, M. Niemelä, Olli Pyrhoonen
{"title":"Recursive parameter estimation of a mechanical system in frequency domain","authors":"N. Nevaranta, J. Montonen, T. Lindh, M. Niemelä, Olli Pyrhoonen","doi":"10.1109/DEMPED.2017.8062344","DOIUrl":null,"url":null,"abstract":"Frequency-domain identification and parameter estimation methods are well established and commonly applied for commissioning and diagnostics purposes in electric drives. In this paper, the feasibility of a recursive least squares parameter estimation algorithm from frequency-domain observations is studied. The identification problem is treated from two different perspectives: first, by estimating a discrete autoregressive model with exogenous terms (ARX) from the discrete Fourier transforms (DFTs) of the input-output signals obtained from the identification experiment and second, a nonparametric model that is fitted in terms of least squares regression. Both proposed identification approaches are studied by simulations and experimentally validated by a closed-loop-controlled servomechanism.","PeriodicalId":325413,"journal":{"name":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2017.8062344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Frequency-domain identification and parameter estimation methods are well established and commonly applied for commissioning and diagnostics purposes in electric drives. In this paper, the feasibility of a recursive least squares parameter estimation algorithm from frequency-domain observations is studied. The identification problem is treated from two different perspectives: first, by estimating a discrete autoregressive model with exogenous terms (ARX) from the discrete Fourier transforms (DFTs) of the input-output signals obtained from the identification experiment and second, a nonparametric model that is fitted in terms of least squares regression. Both proposed identification approaches are studied by simulations and experimentally validated by a closed-loop-controlled servomechanism.
机械系统频域参数的递推估计
频域识别和参数估计方法已经很好地建立,通常应用于电力驱动的调试和诊断目的。本文研究了基于频域观测的递推最小二乘参数估计算法的可行性。识别问题从两个不同的角度进行处理:首先,通过从识别实验中获得的输入-输出信号的离散傅里叶变换(dft)估计带有外生项的离散自回归模型(ARX);其次,根据最小二乘回归拟合的非参数模型。通过仿真和闭环控制伺服机构的实验验证了这两种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信