Enhanced Localization Systems with Multipath Fingerprints and Machine Learning

Marcelo N. de Sousa, R. Thomä
{"title":"Enhanced Localization Systems with Multipath Fingerprints and Machine Learning","authors":"Marcelo N. de Sousa, R. Thomä","doi":"10.1109/PIMRC.2019.8904120","DOIUrl":null,"url":null,"abstract":"We propose a new method to enhance the performance of radio frequency localization in strong multipath and non-line-of-sight (NLOS) situations. The knowledge about the geometrical structure of multipath propagation environment is exploited by using a ray-tracing tool. We further apply the Random Forest (RF) algorithm embedded in a machine learning framework to extract a reference data-set of Time Differences of Arrival (TDOA) fingerprints in multipath outdoor scenarios. Site-specific fingerprints are processed with a multidimensional cross-correlation, called Volume Cross-Correlation function (VCC), to extract the multipath features from measurements. The performance and feasibility of our method was evaluated by simulations and measurements.","PeriodicalId":161972,"journal":{"name":"IEEE International Symposium on Personal, Indoor and Mobile Radio Communications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Personal, Indoor and Mobile Radio Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2019.8904120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new method to enhance the performance of radio frequency localization in strong multipath and non-line-of-sight (NLOS) situations. The knowledge about the geometrical structure of multipath propagation environment is exploited by using a ray-tracing tool. We further apply the Random Forest (RF) algorithm embedded in a machine learning framework to extract a reference data-set of Time Differences of Arrival (TDOA) fingerprints in multipath outdoor scenarios. Site-specific fingerprints are processed with a multidimensional cross-correlation, called Volume Cross-Correlation function (VCC), to extract the multipath features from measurements. The performance and feasibility of our method was evaluated by simulations and measurements.
基于多路径指纹和机器学习的增强定位系统
提出了一种在强多径和非视距情况下提高射频定位性能的新方法。利用光线追踪工具,利用多径传播环境的几何结构知识。我们进一步应用嵌入在机器学习框架中的随机森林(RF)算法来提取多路径户外场景中到达时间差(TDOA)指纹的参考数据集。特定地点的指纹用一种称为体积相互关联函数(VCC)的多维相互关联处理,以从测量中提取多路径特征。通过仿真和实测验证了该方法的性能和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信