Fast Low-Rank Approximation for Covariance Matrices

M. Belabbas, P. Wolfe
{"title":"Fast Low-Rank Approximation for Covariance Matrices","authors":"M. Belabbas, P. Wolfe","doi":"10.1109/CAMSAP.2007.4498023","DOIUrl":null,"url":null,"abstract":"Computing an efficient low-rank approximation of a given positive definite matrix is a ubiquitous task in statistical signal processing and numerical linear algebra. The optimal solution is well known and is given by the singular value decomposition; however, its complexity scales as the cube of the matrix dimension. Here we introduce a low-complexity alternative which approximates this optimal low-rank solution, together with a bound on its worst-case error. Our methodology also reveals a connection between the approximation of matrix products and Schur complements. We present simulation results that verify performance improvements relative to contemporary randomized algorithms for low-rank approximation.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4498023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Computing an efficient low-rank approximation of a given positive definite matrix is a ubiquitous task in statistical signal processing and numerical linear algebra. The optimal solution is well known and is given by the singular value decomposition; however, its complexity scales as the cube of the matrix dimension. Here we introduce a low-complexity alternative which approximates this optimal low-rank solution, together with a bound on its worst-case error. Our methodology also reveals a connection between the approximation of matrix products and Schur complements. We present simulation results that verify performance improvements relative to contemporary randomized algorithms for low-rank approximation.
协方差矩阵的快速低秩逼近
计算给定正定矩阵的有效低秩逼近是统计信号处理和数值线性代数中普遍存在的任务。最优解是已知的,由奇异值分解给出;然而,它的复杂度是矩阵维数的立方。在这里,我们引入了一个低复杂度的替代方案,它近似于这个最优低秩解,并给出了它的最坏情况误差的界限。我们的方法也揭示了矩阵乘积近似和舒尔补之间的联系。我们提出的仿真结果验证了相对于低秩近似的当代随机算法的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信