Neural networks based signal detection

T. Bucciarelli, G. Fedele, R. Parisi
{"title":"Neural networks based signal detection","authors":"T. Bucciarelli, G. Fedele, R. Parisi","doi":"10.1109/NAECON.1993.290838","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present different neural networks able to realize a radar detector. Multilayer perceptrons are considered with different structures which make use of different backpropagation algorithms during the learning phase of the neural network. The reference detection scheme assumed for comparison purposes is a coherent integrator followed by an amplitude detector and optimum thresholding. The comparison (in the Neymann-Pearson sense) with the optimum detector performances allows to assess the signal-to-noise losses pertaining to the different neural network detector structures.<<ETX>>","PeriodicalId":183796,"journal":{"name":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1993.290838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of this paper is to present different neural networks able to realize a radar detector. Multilayer perceptrons are considered with different structures which make use of different backpropagation algorithms during the learning phase of the neural network. The reference detection scheme assumed for comparison purposes is a coherent integrator followed by an amplitude detector and optimum thresholding. The comparison (in the Neymann-Pearson sense) with the optimum detector performances allows to assess the signal-to-noise losses pertaining to the different neural network detector structures.<>
基于神经网络的信号检测
本文的目的是提出能够实现雷达探测器的不同神经网络。多层感知器具有不同的结构,在神经网络学习阶段使用不同的反向传播算法。用于比较的参考检测方案假设是一个相干积分器,然后是一个振幅检测器和最佳阈值。与最佳检测器性能的比较(在内曼-皮尔逊意义上)允许评估与不同神经网络检测器结构有关的信噪比损失
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信