A Fast and Stable Bold Feature Extraction Algorithm

G. Tang, Dawei Wei, Jia Hu
{"title":"A Fast and Stable Bold Feature Extraction Algorithm","authors":"G. Tang, Dawei Wei, Jia Hu","doi":"10.1109/IMCCC.2014.169","DOIUrl":null,"url":null,"abstract":"To improve the stability and real-time of bold feature extraction, this paper proposes a fast and stable bold extraction algorithm (FSB). In the feature detection stage, three-layer Laplace filter is used to construct image scale space instead of binary filter, and a local feature detector is built. In the stage of the feature description, the binarized difference of integral image is used as contextual information to build local feature descriptor. The experimental results show that compared with SIFT and SURF, the speed of FSB is highly improved while their performances are similar. It is suitable for real-time application system.","PeriodicalId":152074,"journal":{"name":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2014.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the stability and real-time of bold feature extraction, this paper proposes a fast and stable bold extraction algorithm (FSB). In the feature detection stage, three-layer Laplace filter is used to construct image scale space instead of binary filter, and a local feature detector is built. In the stage of the feature description, the binarized difference of integral image is used as contextual information to build local feature descriptor. The experimental results show that compared with SIFT and SURF, the speed of FSB is highly improved while their performances are similar. It is suitable for real-time application system.
一种快速稳定的粗体特征提取算法
为了提高加粗特征提取的稳定性和实时性,提出了一种快速稳定的加粗提取算法(FSB)。在特征检测阶段,采用三层拉普拉斯滤波器代替二值滤波器构建图像尺度空间,并构建局部特征检测器。在特征描述阶段,利用积分图像的二值化差作为上下文信息构建局部特征描述符。实验结果表明,与SIFT和SURF算法相比,FSB算法在性能基本相同的情况下,速度有很大提高。适用于实时应用系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信