Diagnosis of aerospace structure defects by a HPC implemented soft computing algorithm

Gianni D’Angelo, S. Rampone
{"title":"Diagnosis of aerospace structure defects by a HPC implemented soft computing algorithm","authors":"Gianni D’Angelo, S. Rampone","doi":"10.1109/MetroAeroSpace.2014.6865959","DOIUrl":null,"url":null,"abstract":"This study concerns with the diagnosis of aerospace structure defects by applying a HPC parallel implementation of a novel learning algorithm, named U-BRAIN. The Soft Computing approach allows advanced multi-parameter data processing in composite materials testing. The HPC parallel implementation overcomes the limits due to the great amount of data and the complexity of data processing. Our experimental results illustrate the effectiveness of the U-BRAIN parallel implementation as defect classifier in aerospace structures. The resulting system is implemented on a Linux-based cluster with multi-core architecture.","PeriodicalId":162403,"journal":{"name":"2014 IEEE Metrology for Aerospace (MetroAeroSpace)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Metrology for Aerospace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace.2014.6865959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This study concerns with the diagnosis of aerospace structure defects by applying a HPC parallel implementation of a novel learning algorithm, named U-BRAIN. The Soft Computing approach allows advanced multi-parameter data processing in composite materials testing. The HPC parallel implementation overcomes the limits due to the great amount of data and the complexity of data processing. Our experimental results illustrate the effectiveness of the U-BRAIN parallel implementation as defect classifier in aerospace structures. The resulting system is implemented on a Linux-based cluster with multi-core architecture.
基于HPC的航天结构缺陷诊断实现了软计算算法
本研究通过一种名为U-BRAIN的新型学习算法的HPC并行实现,关注航空航天结构缺陷的诊断。软计算方法允许在复合材料测试中进行先进的多参数数据处理。高性能计算并行实现克服了数据量大、数据处理复杂的限制。实验结果验证了U-BRAIN并行实现在航空结构缺陷分类中的有效性。所得到的系统是在基于linux的多核架构集群上实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信