A Time-Dependent-Based Approach to Enhance Self-Harm Prediction

Etienne Gael Tajeuna, M. Bouguessa
{"title":"A Time-Dependent-Based Approach to Enhance Self-Harm Prediction","authors":"Etienne Gael Tajeuna, M. Bouguessa","doi":"10.1109/ASONAM55673.2022.10068572","DOIUrl":null,"url":null,"abstract":"We present a time-dependent approach for learning potential features that may explain the early risk of human self-harm. Rather than only extracting features from text posted by users, as suggested by several approaches, we propose remodeling the user posts into sequential data. We demonstrate that the sequences reflecting the longitudinal grammatical language of users allow the improved performance of classification algorithms in predicting self-harm behavior. The experimental results on the eRisk 2019 data corroborate our claim.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a time-dependent approach for learning potential features that may explain the early risk of human self-harm. Rather than only extracting features from text posted by users, as suggested by several approaches, we propose remodeling the user posts into sequential data. We demonstrate that the sequences reflecting the longitudinal grammatical language of users allow the improved performance of classification algorithms in predicting self-harm behavior. The experimental results on the eRisk 2019 data corroborate our claim.
基于时间依赖的自我伤害预测方法
我们提出了一种时间依赖的方法来学习可能解释人类自残早期风险的潜在特征。我们不是像一些方法建议的那样,仅仅从用户发布的文本中提取特征,而是建议将用户发布重塑为顺序数据。我们证明了反映用户纵向语法语言的序列可以提高分类算法在预测自残行为方面的性能。eRisk 2019数据的实验结果证实了我们的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信