{"title":"Microcalcification detection based on localized texture comparison","authors":"Xin Yuan, P. Shi","doi":"10.1109/ICIP.2004.1421732","DOIUrl":null,"url":null,"abstract":"While microcalcifications (MCs) are important early signs of breast cancers, their reliable detection from mammograms has been largely elusive for both radiologists and computer-aided diagnosis (CAD) strategies. Two of the essential components in a CAD system are the detection of the suspicious MC pixels/regions using image processing and analysis techniques, and the training, classification, and recognition of these areas based on pattern recognition methods. In this paper, we present a novel scheme to identify and classify microcalcifications based on localized texture comparison. Relying on a texture removal and repairing (R&R) process of the preselected suspicious areas from their surrounding background tissues, pre- and post- R&R local characteristic features of these areas are extracted and compared. A modified AdaBoost algorithm is then adopted to train the classifier using expert-labelled microcalcifications, followed by a clustering process. Experiments with the mammographic images from the MIAS and DDSM databases have shown very promising results.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
While microcalcifications (MCs) are important early signs of breast cancers, their reliable detection from mammograms has been largely elusive for both radiologists and computer-aided diagnosis (CAD) strategies. Two of the essential components in a CAD system are the detection of the suspicious MC pixels/regions using image processing and analysis techniques, and the training, classification, and recognition of these areas based on pattern recognition methods. In this paper, we present a novel scheme to identify and classify microcalcifications based on localized texture comparison. Relying on a texture removal and repairing (R&R) process of the preselected suspicious areas from their surrounding background tissues, pre- and post- R&R local characteristic features of these areas are extracted and compared. A modified AdaBoost algorithm is then adopted to train the classifier using expert-labelled microcalcifications, followed by a clustering process. Experiments with the mammographic images from the MIAS and DDSM databases have shown very promising results.