A. Trembanis, Craig Cary, Val E. Schmidt, Don R. Clarke, T. Crees, Eric Jackson
{"title":"Modular autonomous biosampler (MAB) — A prototype system for distinct biological size-class sampling and preservation","authors":"A. Trembanis, Craig Cary, Val E. Schmidt, Don R. Clarke, T. Crees, Eric Jackson","doi":"10.1109/OCEANS.2012.6405110","DOIUrl":null,"url":null,"abstract":"Presently, there is a community wide deficiency in our ability to collect and preserve multiple size-class biologic samples across a broad spectrum of oceanographic platforms (e.g. AUVs, ROVs, and Ocean Observing System Nodes). This is particularly surprising in comparison to the level of instrumentation that now exists for acquiring physical and geophysical data (e.g. side-scan sonar, current profiles etc.), from these same platforms. We present our effort to develop a low-cost, high sample capacity modular, autonomous biological sampling device (MAB). The unit is designed for filtering and preserving 3 distinct biological size-classes (including bacteria), and is deployable in any aquatic setting from a variety of platform modalities (AUV, ROV, or mooring).","PeriodicalId":434023,"journal":{"name":"2012 Oceans","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2012.6405110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Presently, there is a community wide deficiency in our ability to collect and preserve multiple size-class biologic samples across a broad spectrum of oceanographic platforms (e.g. AUVs, ROVs, and Ocean Observing System Nodes). This is particularly surprising in comparison to the level of instrumentation that now exists for acquiring physical and geophysical data (e.g. side-scan sonar, current profiles etc.), from these same platforms. We present our effort to develop a low-cost, high sample capacity modular, autonomous biological sampling device (MAB). The unit is designed for filtering and preserving 3 distinct biological size-classes (including bacteria), and is deployable in any aquatic setting from a variety of platform modalities (AUV, ROV, or mooring).