A unified model for metasearch and the efficient evaluation of retrieval systems via the hedge algorithm

J. Aslam, Virgil Pavlu, R. Savell
{"title":"A unified model for metasearch and the efficient evaluation of retrieval systems via the hedge algorithm","authors":"J. Aslam, Virgil Pavlu, R. Savell","doi":"10.1145/860435.860517","DOIUrl":null,"url":null,"abstract":"We present a unified framework for simultaneously solving both the pooling problem (the construction of efficient document pools for the evaluation of retrieval systems) and metasearch (the fusion of ranked lists returned by retrieval systems in order to increase performance). The implementation is based on the Hedge algorithm for online learning, which has the advantage of convergence to bounded error rates approaching the performance of the best linear combination of the underlying systems. The choice of a loss function closely related to the average precision measure of system performance ensures that the judged document set performs well, both in constructing a metasearch list and as a pool for the accurate evaluation of retrieval systems. Our experimental results on TREC data demonstrate excellent performance in all measures---evaluation of systems, retrieval of relevant documents, and generation of metasearch lists.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present a unified framework for simultaneously solving both the pooling problem (the construction of efficient document pools for the evaluation of retrieval systems) and metasearch (the fusion of ranked lists returned by retrieval systems in order to increase performance). The implementation is based on the Hedge algorithm for online learning, which has the advantage of convergence to bounded error rates approaching the performance of the best linear combination of the underlying systems. The choice of a loss function closely related to the average precision measure of system performance ensures that the judged document set performs well, both in constructing a metasearch list and as a pool for the accurate evaluation of retrieval systems. Our experimental results on TREC data demonstrate excellent performance in all measures---evaluation of systems, retrieval of relevant documents, and generation of metasearch lists.
一个统一的元搜索模型和基于对冲算法的检索系统的有效评估
我们提出了一个统一的框架,用于同时解决池化问题(构建用于评估检索系统的高效文档池)和元搜索(融合检索系统返回的排名列表以提高性能)。该实现基于在线学习的Hedge算法,其优点是收敛到接近底层系统最佳线性组合性能的有界错误率。损失函数的选择与系统性能的平均精度度量密切相关,确保被判断的文档集在构建元搜索列表和作为准确评估检索系统的池方面表现良好。我们在TREC数据上的实验结果在系统评估、相关文档检索和元搜索列表生成等所有度量方面都表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信