Computer Vision System for Determining the Reference Point

O. Sheremet, O. Kovalchuk, Kateryna Sheremet, O. Sadovoi, T. Kiriienko, Yuliia Sokhina
{"title":"Computer Vision System for Determining the Reference Point","authors":"O. Sheremet, O. Kovalchuk, Kateryna Sheremet, O. Sadovoi, T. Kiriienko, Yuliia Sokhina","doi":"10.1109/KhPIWeek57572.2022.9916417","DOIUrl":null,"url":null,"abstract":"The stages of development and implementation of neural network methods for visual determination of the reference points coordinates of a specific technical object are considered. Publicly available information about artificial neural networks and computer vision is analyzed. The description of the proposed intellectual system is carried out, questions of data markup, as well as an artificial increase in their number, are raised. The resulting intelligent system has an average accuracy of 95.2%.","PeriodicalId":197096,"journal":{"name":"2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KhPIWeek57572.2022.9916417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stages of development and implementation of neural network methods for visual determination of the reference points coordinates of a specific technical object are considered. Publicly available information about artificial neural networks and computer vision is analyzed. The description of the proposed intellectual system is carried out, questions of data markup, as well as an artificial increase in their number, are raised. The resulting intelligent system has an average accuracy of 95.2%.
确定参考点的计算机视觉系统
考虑了用于视觉确定特定技术对象的参考点坐标的神经网络方法的发展和实施阶段。分析了有关人工神经网络和计算机视觉的公开信息。对所提出的智能系统进行了描述,提出了数据标记的问题,以及人为增加数据标记数量的问题。由此产生的智能系统的平均准确率为95.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信