Optimization of missing value imputation using Reinforcement Programming

Irene Erlyn Wina Rachmawan, Ali Ridho Barakbah
{"title":"Optimization of missing value imputation using Reinforcement Programming","authors":"Irene Erlyn Wina Rachmawan, Ali Ridho Barakbah","doi":"10.1109/ELECSYM.2015.7380828","DOIUrl":null,"url":null,"abstract":"Missing value imputation is a crucial and challenging research topic in data mining because the data in real life are often contains missing value. The incorrect way to handle missing value will lead major problem in data mining processing to produce a new knowledge. One technique to solve Missing value imputation is by using machine learning algorithm. In this paper, we will present a new approach for missing data imputation using Reinforcement Programming to deal with incomplete data by filling the incompleteness data with considering exploration and exploitation of its environment to learn the data pattern. The experimental result demonstrates that Reinforcement Programming runs well and has a great result of SSE of new data with assigned value and shows effectiveness computational time than the other five imputation methods used as benchmark.","PeriodicalId":248906,"journal":{"name":"2015 International Electronics Symposium (IES)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Electronics Symposium (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECSYM.2015.7380828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Missing value imputation is a crucial and challenging research topic in data mining because the data in real life are often contains missing value. The incorrect way to handle missing value will lead major problem in data mining processing to produce a new knowledge. One technique to solve Missing value imputation is by using machine learning algorithm. In this paper, we will present a new approach for missing data imputation using Reinforcement Programming to deal with incomplete data by filling the incompleteness data with considering exploration and exploitation of its environment to learn the data pattern. The experimental result demonstrates that Reinforcement Programming runs well and has a great result of SSE of new data with assigned value and shows effectiveness computational time than the other five imputation methods used as benchmark.
基于强化规划的缺失值输入优化
由于现实生活中的数据往往含有缺失值,缺失值的估计是数据挖掘中一个重要而富有挑战性的研究课题。缺失值处理方法的不正确将导致数据挖掘处理中产生新知识的重大问题。一种解决缺失值输入的技术是利用机器学习算法。在本文中,我们将提出一种新的缺失数据插入方法,使用强化编程来处理不完整数据,通过考虑探索和利用其环境来学习数据模式来填充不完整数据。实验结果表明,与其他五种方法相比,强化规划方法运行良好,具有较好的赋值新数据的SSE效果,计算时间也较有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信