Power System Electromechanical Mode Estimation using Lower-Order Recursive Subspace Method

Dilip Pandit, Deepak Pandit, N. Nguyen, S. Elsaiah
{"title":"Power System Electromechanical Mode Estimation using Lower-Order Recursive Subspace Method","authors":"Dilip Pandit, Deepak Pandit, N. Nguyen, S. Elsaiah","doi":"10.1109/NAPS52732.2021.9654522","DOIUrl":null,"url":null,"abstract":"This paper presents an improved model for the oscillatory mode estimation of the power system using ambient data. The measured data-based recursive stochastic subspace method is integrated with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to facilitate mode estimation in parallel with a reduced model order of the recursive subspace method. The CEEMDAN is used to decompose the input synchrophasor into intrinsic mode functions (IMF) groups which serve as input vectors to the parallel engines for mode estimation. The resulting mode estimator has a lower model order which reduces the computation cost, a major drawback of the subspace methods. The modified small-order recursive stochastic subspace algorithm is validated to estimate the ambient modes using the simulated data from a reduced-order model of the Western Electricity Coordinating Council (WECC) system.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an improved model for the oscillatory mode estimation of the power system using ambient data. The measured data-based recursive stochastic subspace method is integrated with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to facilitate mode estimation in parallel with a reduced model order of the recursive subspace method. The CEEMDAN is used to decompose the input synchrophasor into intrinsic mode functions (IMF) groups which serve as input vectors to the parallel engines for mode estimation. The resulting mode estimator has a lower model order which reduces the computation cost, a major drawback of the subspace methods. The modified small-order recursive stochastic subspace algorithm is validated to estimate the ambient modes using the simulated data from a reduced-order model of the Western Electricity Coordinating Council (WECC) system.
基于低阶递推子空间法的电力系统机电模式估计
本文提出了一种利用环境数据估计电力系统振荡模态的改进模型。将基于实测数据的递推随机子空间方法与带自适应噪声的完全系综经验模态分解(CEEMDAN)相结合,在降低递推子空间方法模型阶数的同时实现模态估计。CEEMDAN用于将输入同步量分解为内禀模式函数(IMF)组,这些内禀模式函数组作为并行引擎的输入向量进行模式估计。所得到的模态估计量具有较低的模型阶数,从而降低了计算成本,这是子空间方法的一个主要缺点。利用西部电力协调委员会(WECC)系统降阶模型的仿真数据,验证了改进的小阶递推随机子空间算法对环境模态的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信