On constructing weight structures and extending them to idempotent extensions

M. Bondarko, V. Sosnilo
{"title":"On constructing weight structures and extending them to idempotent extensions","authors":"M. Bondarko, V. Sosnilo","doi":"10.4310/HHA.2018.V20.N1.A3","DOIUrl":null,"url":null,"abstract":"We describe a new method for constructing a weight structure $w$ on a triangulated category $C$. \nFor a given $C$ and $w$ it allow us to give a fairly comprehensive (and new) description of those triangulated categories consisting of retracts of objects of $C$ (i.e., of subcategories of the Karoubi envelope of $C$ that contain $C$; we call them idempotent extensions of $C$) such that $w$ extends to them. In particular, any bounded above or below $w$ extends to any idempotent extension of $C$. We also discuss the applications of our results to certain triangulated categories of (\"relative\") motives.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2018.V20.N1.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We describe a new method for constructing a weight structure $w$ on a triangulated category $C$. For a given $C$ and $w$ it allow us to give a fairly comprehensive (and new) description of those triangulated categories consisting of retracts of objects of $C$ (i.e., of subcategories of the Karoubi envelope of $C$ that contain $C$; we call them idempotent extensions of $C$) such that $w$ extends to them. In particular, any bounded above or below $w$ extends to any idempotent extension of $C$. We also discuss the applications of our results to certain triangulated categories of ("relative") motives.
论权结构的构造及其幂等扩展
我们描述了在三角分类C上构造权结构w的一种新方法。对于给定的$C$和$w$,它允许我们对由$C$对象的收缩(即包含$C$的$C$的Karoubi包络的子类别)组成的三角分类给出一个相当全面(和新的)描述;我们称它们为$C$的幂等扩展,使得$w$扩展到它们。特别地,任何大于或小于$w$的有界扩展到$C$的幂等扩展。我们还讨论了我们的结果在某些三角分类(“相对”)动机中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信