Indoor Tracking Using Crowdsourced Maps

Jiang Dong, Yu Xiao, Zhonghong Ou, Yong Cui, Antti Ylä-Jääski
{"title":"Indoor Tracking Using Crowdsourced Maps","authors":"Jiang Dong, Yu Xiao, Zhonghong Ou, Yong Cui, Antti Ylä-Jääski","doi":"10.1109/IPSN.2016.7460679","DOIUrl":null,"url":null,"abstract":"Using crowdsourced visual and inertial sensor data for indoor mapping has attracted much attention in recent years. Nevertheless, the opportunities and challenges of indoor tracking using crowdsourced maps have not been fully explored. In this work, we aim at tackling the challenges due to incomplete obstacle information in crowdsourced indoor maps, especially at the initialization stage of crowdsourcing. We propose a novel solution for particle-filtering-based indoor tracking, using the crowdsourced maps derived from image-based 3D point clouds. Our solution enhances particle filtering with density-based collision detection and history-based particle regeneration. Evaluation with real user traces demonstrates that our solution outperforms the state-of-the-art. In particular, it reduces the average distance error of indoor tracking by 47% when using crowdsourced 3D point clouds.","PeriodicalId":137855,"journal":{"name":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2016.7460679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Using crowdsourced visual and inertial sensor data for indoor mapping has attracted much attention in recent years. Nevertheless, the opportunities and challenges of indoor tracking using crowdsourced maps have not been fully explored. In this work, we aim at tackling the challenges due to incomplete obstacle information in crowdsourced indoor maps, especially at the initialization stage of crowdsourcing. We propose a novel solution for particle-filtering-based indoor tracking, using the crowdsourced maps derived from image-based 3D point clouds. Our solution enhances particle filtering with density-based collision detection and history-based particle regeneration. Evaluation with real user traces demonstrates that our solution outperforms the state-of-the-art. In particular, it reduces the average distance error of indoor tracking by 47% when using crowdsourced 3D point clouds.
使用众包地图进行室内跟踪
近年来,利用众包视觉和惯性传感器数据进行室内测绘备受关注。然而,使用众包地图进行室内跟踪的机遇和挑战尚未得到充分探索。在这项工作中,我们旨在解决众包室内地图中障碍物信息不完整所带来的挑战,特别是在众包初始阶段。我们提出了一种基于粒子滤波的室内跟踪的新解决方案,使用基于图像的3D点云衍生的众包地图。我们的解决方案通过基于密度的碰撞检测和基于历史的粒子再生来增强粒子过滤。使用真实用户跟踪的评估表明,我们的解决方案优于最先进的解决方案。特别是,当使用众包3D点云时,它将室内跟踪的平均距离误差降低了47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信