Big social data analytics for public health: Facebook engagement and performance

Nadiya Straton, Kjeld Hansen, R. Mukkamala, Abid Hussain, Tor-Morten Grønli, H. Langberg, Ravikiran Vatrapu
{"title":"Big social data analytics for public health: Facebook engagement and performance","authors":"Nadiya Straton, Kjeld Hansen, R. Mukkamala, Abid Hussain, Tor-Morten Grønli, H. Langberg, Ravikiran Vatrapu","doi":"10.1109/HealthCom.2016.7749497","DOIUrl":null,"url":null,"abstract":"In recent years, social media has offered new opportunities for interaction and distribution of public health information within and across organisations. In this paper, we analysed data from Facebook walls of 153 public organisations using unsupervised machine learning techniques to understand the characteristics of user engagement and post performance. Our analysis indicates an increasing trend of user engagement on public health posts during recent years. Based on the clustering results, our analysis shows that Photo and Link type posts are most favourable for high and medium user engagement respectively.","PeriodicalId":167022,"journal":{"name":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2016.7749497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In recent years, social media has offered new opportunities for interaction and distribution of public health information within and across organisations. In this paper, we analysed data from Facebook walls of 153 public organisations using unsupervised machine learning techniques to understand the characteristics of user engagement and post performance. Our analysis indicates an increasing trend of user engagement on public health posts during recent years. Based on the clustering results, our analysis shows that Photo and Link type posts are most favourable for high and medium user engagement respectively.
公共卫生大社交数据分析:Facebook参与度和表现
近年来,社交媒体为组织内部和组织之间的公共卫生信息互动和传播提供了新的机会。在本文中,我们使用无监督机器学习技术分析了来自153个公共组织的Facebook墙的数据,以了解用户参与度和帖子表现的特征。我们的分析表明,近年来,公共卫生帖子的用户参与度呈上升趋势。基于聚类结果,我们的分析表明,照片和链接类型的帖子分别最有利于高用户参与度和中等用户参与度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信