Minimizing vertex-degree function index for k-generalized quasi-unicyclic graphs

I. Tomescu
{"title":"Minimizing vertex-degree function index for k-generalized quasi-unicyclic graphs","authors":"I. Tomescu","doi":"10.26493/2590-9770.1364.48B","DOIUrl":null,"url":null,"abstract":"In this paper the problem of minimizing vertex-degree function index Hf(G) for k-generalized quasi-unicyclic graphs of order n is solved for k ≥ 1 and n ≥ 2k + 2 if the function f is strictly increasing and strictly convex. These conditions are fulfilled by general first Zagreb index 0Rα(G) if α > 1, second multiplicative Zagreb index ∏2(G) and sum lordeg index SL(G). The extremal graph is unique for k = 1, n = 4 and for k ≥ 2 and it consists from a path x1, x2, …, xn − 1 and a new vertex xn adjacent with xk, xk + 1 and xk + 2.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1364.48B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper the problem of minimizing vertex-degree function index Hf(G) for k-generalized quasi-unicyclic graphs of order n is solved for k ≥ 1 and n ≥ 2k + 2 if the function f is strictly increasing and strictly convex. These conditions are fulfilled by general first Zagreb index 0Rα(G) if α > 1, second multiplicative Zagreb index ∏2(G) and sum lordeg index SL(G). The extremal graph is unique for k = 1, n = 4 and for k ≥ 2 and it consists from a path x1, x2, …, xn − 1 and a new vertex xn adjacent with xk, xk + 1 and xk + 2.
k-广义拟单环图顶点度函数索引的最小化
本文解决了k- n阶广义拟单环图的顶点度函数指标Hf(G)在k≥1和n≥2k + 2条件下的最小化问题,如果函数f是严格递增和严格凸的。这些条件由一般第一萨格勒布指数0Rα(G) if α > 1,第二乘法萨格勒布指数∏2(G)和求和指数SL(G)来满足。当k = 1, n = 4和k≥2时,极值图是唯一的,它由路径x1, x2,…,xn - 1和与xk, xk + 1和xk + 2相邻的新顶点xn组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信