Cluster ensemble for gene expression microarray data

M. D. Souto, Shirlly C. M. Silva, V. G. Bittencourt, D. Araújo
{"title":"Cluster ensemble for gene expression microarray data","authors":"M. D. Souto, Shirlly C. M. Silva, V. G. Bittencourt, D. Araújo","doi":"10.1109/IJCNN.2005.1555879","DOIUrl":null,"url":null,"abstract":"Ensemble techniques have been successfully applied in the context of supervised learning to increase the accuracy and stability of classification. Recently, similar techniques have been proposed for clustering algorithms. In this context, we analyze the potential of applying cluster ensemble techniques to gene expression microarray data. Our experimental results show that there is often a significant improvement in the results obtained with the use of ensemble when compared to those based on the clustering techniques used individually.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Ensemble techniques have been successfully applied in the context of supervised learning to increase the accuracy and stability of classification. Recently, similar techniques have been proposed for clustering algorithms. In this context, we analyze the potential of applying cluster ensemble techniques to gene expression microarray data. Our experimental results show that there is often a significant improvement in the results obtained with the use of ensemble when compared to those based on the clustering techniques used individually.
基因表达微阵列数据的聚类集成
集成技术已经成功地应用于监督学习中,以提高分类的准确性和稳定性。最近,类似的技术被提出用于聚类算法。在这种情况下,我们分析应用集群集成技术基因表达微阵列数据的潜力。我们的实验结果表明,与单独使用基于聚类技术的结果相比,使用集成技术获得的结果通常有显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信