Local Optima Avoidance in GA Biclustering using Map Reduce

R. Gowri, R. Rathipriya
{"title":"Local Optima Avoidance in GA Biclustering using Map Reduce","authors":"R. Gowri, R. Rathipriya","doi":"10.4018/IJKDB.2016010104","DOIUrl":null,"url":null,"abstract":"One of the prominent issues in Genetic Algorithm GA is premature convergence on local optima. This restricts the enhanced optimal solution searching in the entire search space. Population size is one of the influencing factors in Genetic Algorithm. Increasing the population size will improvise the randomized searching and maintains the diversity in the population. It also increases its computational complexity. Especially in GA Biclustering GABiC, the search should be randomized to find more optimal patterns. In this paper, a novel approach for population setup in MapReduce framework is proposed. The maximal population is split into population sets, and these groups will proceed searching in parallel using MapReduce framework. This approach is attempted for biclustering the gene expression dataset in this paper. The performance of this proposed work seems promising on comparing its results with those obtained from previous hybridized optimization approaches. This approach will also handle data scalability issues and applicable to the big data biclustering problems.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKDB.2016010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the prominent issues in Genetic Algorithm GA is premature convergence on local optima. This restricts the enhanced optimal solution searching in the entire search space. Population size is one of the influencing factors in Genetic Algorithm. Increasing the population size will improvise the randomized searching and maintains the diversity in the population. It also increases its computational complexity. Especially in GA Biclustering GABiC, the search should be randomized to find more optimal patterns. In this paper, a novel approach for population setup in MapReduce framework is proposed. The maximal population is split into population sets, and these groups will proceed searching in parallel using MapReduce framework. This approach is attempted for biclustering the gene expression dataset in this paper. The performance of this proposed work seems promising on comparing its results with those obtained from previous hybridized optimization approaches. This approach will also handle data scalability issues and applicable to the big data biclustering problems.
基于Map约简的GA双聚类局部最优避免
遗传算法的一个突出问题是局部最优的过早收敛。这限制了在整个搜索空间中进行增强的最优解搜索。种群大小是遗传算法的影响因素之一。增大种群的大小可以使随机化搜索更加简便,保持种群的多样性。这也增加了它的计算复杂性。特别是在GA双聚类GABiC中,搜索应该是随机化的,以找到更多的最优模式。本文提出了一种新的MapReduce框架下的种群设置方法。将最大种群划分为种群集,这些群体将使用MapReduce框架并行地进行搜索。本文尝试用这种方法对基因表达数据集进行双聚类。与以前的混合优化方法得到的结果相比,这项工作的性能似乎很有希望。这种方法还可以处理数据可伸缩性问题,并适用于大数据双集群问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信