Trajectory prediction method based on a graph model for autonomous driving

{"title":"Trajectory prediction method based on a graph model for autonomous driving","authors":"","doi":"10.36652/0869-4931-2022-76-9-408-413","DOIUrl":null,"url":null,"abstract":"A method for predicting the trajectory of an unmanned vehicle using graphs and a network of long short-term memory (LSTM) is developed. The learning model of LSTM network uses an encoder and decoder structure. Based on the graph and the attention mechanism, the encoder encodes information about the received trajectory to form a feature vector, which is puted to the decoder to predict future trajectories. To cope with multimodality in predicting vehicle maneuvers, module of convolutional network (CNN) is used. These two networks: LSTM and CNN are integrated for multimodal trajectory prediction.\n\nKeywords\nunmanned vehicle, trajectory prediction, maneuver, graph, LSTM, CNN, attention mechanism","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4931-2022-76-9-408-413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for predicting the trajectory of an unmanned vehicle using graphs and a network of long short-term memory (LSTM) is developed. The learning model of LSTM network uses an encoder and decoder structure. Based on the graph and the attention mechanism, the encoder encodes information about the received trajectory to form a feature vector, which is puted to the decoder to predict future trajectories. To cope with multimodality in predicting vehicle maneuvers, module of convolutional network (CNN) is used. These two networks: LSTM and CNN are integrated for multimodal trajectory prediction. Keywords unmanned vehicle, trajectory prediction, maneuver, graph, LSTM, CNN, attention mechanism
基于图模型的自动驾驶轨迹预测方法
提出了一种利用图形和长短期记忆网络(LSTM)预测无人驾驶飞行器轨迹的方法。LSTM网络的学习模型采用编码器和解码器结构。基于图和注意机制,编码器对接收到的轨迹信息进行编码,形成特征向量,将特征向量输入到解码器中,用于预测未来的轨迹。为了应对车辆机动预测的多模态,采用了卷积网络(CNN)模块。结合LSTM和CNN两种网络进行多模态轨迹预测。关键词:无人驾驶飞行器,轨迹预测,机动,图,LSTM, CNN,注意机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信