An Approach to Optimized Resource Scheduling Algorithm for Open-Source Cloud Systems

Hai Zhong, Kun Tao, Xuejie Zhang
{"title":"An Approach to Optimized Resource Scheduling Algorithm for Open-Source Cloud Systems","authors":"Hai Zhong, Kun Tao, Xuejie Zhang","doi":"10.1109/ChinaGrid.2010.37","DOIUrl":null,"url":null,"abstract":"Based on the deep research on Infrastructure as a Service (IaaS) cloud systems of open-source, we propose an optimized scheduling algorithm to achieve the optimization or sub-optimization for cloud scheduling problems. In this paper, we investigate the possibility to allocate the Virtual Machines (VMs) in a flexible way to permit the maximum usage of physical resources. We use an Improved Genetic Algorithm (IGA) for the automated scheduling policy. The IGA uses the shortest genes and introduces the idea of Dividend Policy in Economics to select an optimal or suboptimal allocation for the VMs requests. The simulation experiments indicate that our dynamic scheduling policy performs much better than that of the Eucalyptus, Open Nebula, Nimbus IaaS cloud, etc. The tests illustrate that the speed of the IGA almost twice the traditional GA scheduling method in Grid environment and the utilization rate of resources always higher than the open-source IaaS cloud systems.","PeriodicalId":429657,"journal":{"name":"2010 Fifth Annual ChinaGrid Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth Annual ChinaGrid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2010.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

Abstract

Based on the deep research on Infrastructure as a Service (IaaS) cloud systems of open-source, we propose an optimized scheduling algorithm to achieve the optimization or sub-optimization for cloud scheduling problems. In this paper, we investigate the possibility to allocate the Virtual Machines (VMs) in a flexible way to permit the maximum usage of physical resources. We use an Improved Genetic Algorithm (IGA) for the automated scheduling policy. The IGA uses the shortest genes and introduces the idea of Dividend Policy in Economics to select an optimal or suboptimal allocation for the VMs requests. The simulation experiments indicate that our dynamic scheduling policy performs much better than that of the Eucalyptus, Open Nebula, Nimbus IaaS cloud, etc. The tests illustrate that the speed of the IGA almost twice the traditional GA scheduling method in Grid environment and the utilization rate of resources always higher than the open-source IaaS cloud systems.
开源云系统资源调度优化算法研究
在对开源基础设施即服务(IaaS)云系统进行深入研究的基础上,提出了一种优化调度算法,实现对云调度问题的优化或子优化。在本文中,我们研究了以灵活的方式分配虚拟机(vm)以允许最大限度地使用物理资源的可能性。我们使用改进的遗传算法(IGA)来实现自动调度策略。IGA使用最短基因,并引入经济学中的红利政策思想,为虚拟机请求选择最优或次优分配。仿真实验表明,动态调度策略的性能明显优于Eucalyptus、Open Nebula、Nimbus等IaaS云。测试结果表明,在网格环境下,IGA调度速度几乎是传统GA调度方法的两倍,资源利用率始终高于开源IaaS云系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信