Aplikasi Web Prediksi Dampak Gempa di Indonesia Menggunakan Metode Decision Tree dengan Algoritma C4.5

Diory Pribadi Sinaga Sinaga, Rini Marwati, Bambang Avip, Priatna Martadiputra
{"title":"Aplikasi Web Prediksi Dampak Gempa di Indonesia Menggunakan Metode Decision Tree dengan Algoritma C4.5","authors":"Diory Pribadi Sinaga Sinaga, Rini Marwati, Bambang Avip, Priatna Martadiputra","doi":"10.21009/jmt.5.2.5","DOIUrl":null,"url":null,"abstract":"An event or problem sometimes needs to be predicted to determine the impact caused. One of the events that need to be predicted is the impact of the earthquake. The Meteorology, Climatology and Geophysics Agency (BMKG) classifies earthquake impacts based on the BMKG Earthquake Intensity Scale (SIG-BMKG) which consists of 5 scales. In making predictions on a problem, you can use data mining that extracts data into useful information. Grouping the impact of an earthquake is one of the tasks of data mining, namely classification. Prediction can be viewed as a classification that groups data into predefined classes. One classification method is the Decision Tree. This method can handle both categorical and numerical data on large data. Some of the algorithm of the Decision Tree method are ID3, CART, and C4.5. The C4.5 algorithm is an improved ID3 algorithm so that it can handle missing values and continuous data. This study aims to construct a model and analyze the performance of the model obtained using the Decision Tree method with the C4.5 algorithm. In determining the best model, you can utilize Split Validation and k-fold Cross Validation. The best model was obtained in the first iteration of 10-fold Cross Validation. The best model is then used in a web application that can be used by the community to predict the impact of earthquakes that occur in Indonesia.","PeriodicalId":299241,"journal":{"name":"JMT : Jurnal Matematika dan Terapan","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMT : Jurnal Matematika dan Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21009/jmt.5.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An event or problem sometimes needs to be predicted to determine the impact caused. One of the events that need to be predicted is the impact of the earthquake. The Meteorology, Climatology and Geophysics Agency (BMKG) classifies earthquake impacts based on the BMKG Earthquake Intensity Scale (SIG-BMKG) which consists of 5 scales. In making predictions on a problem, you can use data mining that extracts data into useful information. Grouping the impact of an earthquake is one of the tasks of data mining, namely classification. Prediction can be viewed as a classification that groups data into predefined classes. One classification method is the Decision Tree. This method can handle both categorical and numerical data on large data. Some of the algorithm of the Decision Tree method are ID3, CART, and C4.5. The C4.5 algorithm is an improved ID3 algorithm so that it can handle missing values and continuous data. This study aims to construct a model and analyze the performance of the model obtained using the Decision Tree method with the C4.5 algorithm. In determining the best model, you can utilize Split Validation and k-fold Cross Validation. The best model was obtained in the first iteration of 10-fold Cross Validation. The best model is then used in a web application that can be used by the community to predict the impact of earthquakes that occur in Indonesia.
Web应用程序预测印度尼西亚的地震影响,使用的算法是C4.5
有时需要对事件或问题进行预测,以确定其造成的影响。需要预测的事件之一是地震的影响。英国气象、气候和地球物理局(BMKG)根据BMKG地震烈度等级(SIG-BMKG)对地震影响进行分类,该等级由5个等级组成。在对问题进行预测时,可以使用数据挖掘,将数据提取为有用的信息。对地震的影响进行分组是数据挖掘的任务之一,即分类。预测可以看作是将数据分组到预定义类中的一种分类。一种分类方法是决策树。该方法可以同时处理大数据上的分类数据和数值数据。决策树方法的一些算法有ID3、CART和C4.5。C4.5算法是对ID3算法的改进,可以处理缺失值和连续数据。本研究旨在通过C4.5算法构建决策树方法得到的模型,并对模型的性能进行分析。在确定最佳模型时,您可以使用分割验证和k-fold交叉验证。在第一次10次交叉验证中获得最佳模型。然后将最佳模型用于web应用程序,社区可以使用该应用程序来预测发生在印度尼西亚的地震的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信