Evaluation of background noise for significance level identification

J. Poměnková, E. Klejmova, T. Malach
{"title":"Evaluation of background noise for significance level identification","authors":"J. Poměnková, E. Klejmova, T. Malach","doi":"10.1109/IWSSIP.2017.7965614","DOIUrl":null,"url":null,"abstract":"The paper deals with the identification of the significance level for testing the time-frequency transform of the data. The usual procedure of time-frequency significance testing is based on the knowledge of background spectrum. Very often, we have certain expectations about the character the background noise (White noise, Red noise, etc.). Our paper deals with the case when the character of the noise is unknown and may not be Gaussian despite our assumptions. Thus, we propose how to identify our own critical values for testing time-frequency transform significance with respect to the data character. We compare our findings with the critical quantile of χ22.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with the identification of the significance level for testing the time-frequency transform of the data. The usual procedure of time-frequency significance testing is based on the knowledge of background spectrum. Very often, we have certain expectations about the character the background noise (White noise, Red noise, etc.). Our paper deals with the case when the character of the noise is unknown and may not be Gaussian despite our assumptions. Thus, we propose how to identify our own critical values for testing time-frequency transform significance with respect to the data character. We compare our findings with the critical quantile of χ22.
评价显著性水平识别的背景噪声
本文讨论了检验数据时频变换的显著性水平的识别问题。通常的时频显著性检验是基于背景谱的知识。通常情况下,我们对背景噪音(白噪音,红噪音等)的角色有一定的期望。我们的论文处理的情况下,噪声的性质是未知的,可能不是高斯尽管我们的假设。因此,我们提出了如何识别我们自己的临界值来测试时频变换显著性相对于数据特征。我们将结果与χ22的临界分位数进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信